Почвенная биота. Севооборот и почвенная биота Сезонная динамика численности микроартропод агроценозов подзоны северной лесостепи

Кроме минералов и органических остатков растений и животных, в почве много мелких (микро-), средних (мезо-) и больших (макро-) организмов, которые в значительной степени влияют на жизнедеятельность растений.

Выдающийся ученый прошлого Владимир Докучаев писал: «Попробуйте вырезать из целинной древней степи кубик почвы. Увидите в нем больше корней, трав, ходов жучков, личинок, чем земли. Все это сверлит, точит, роет почву, и образуется губка, которую ни с чем не сравнить». Эта «губка» впитывает влагу дождей и ливней, оживляет землю. А почва, обработанная лопатой или плугом, превращается в плотную, бесструктурную массу: биота (червяки, личинки, водоросли, рачки, грибки) погибает или уходит глубже в землю.

Группы почвенных организмов:

  • микробиота (бактерии, грибы, почвенные водоросли и простейшие организмы);
  • мезобиота (нематоды, мелкие личинки насекомых, клещи, ногохвостки);
  • макробиота (насекомые, дождевые черви и др.).

В здоровой почве масса живых существ огромна, одних бактерий - до 20 т/га. И все они, даже те, которых называют вредителями, запрограммированы повышать плодородие почвы, но они гибнут из-за химических средств защиты растений, минеральных удобрений, глубокой вспашки с переворотом пласта, сжигания стерни. Давайте поближе познакомимся с представителями этой «армии плодородия».

Бактерии разлагают безазотистые органические соединения; раскладывают белок и мочевину с выделением аммиака; осуществляют нитрификацию, денитрификацию и азотфиксацию; окисляют серу, железо; превращают труднорастворимые соединения фосфора и калия в легкодоступные для растений формы.

Актиномицеты раскладывают гемицеллюлозу, водорастворимые сахара; образуют гумусовые вещества; вместе с бактериями завершают разложение растительных остатков.

Низшие грибы перерабатывают целлюлозу, лигнин; образуют гумусовые вещества; могут окислять серу, часто находятся в симбиозе с высшими растениями, образуя микоризу, которая накапливает питательные вещества и влагу, защищает своими антибиотическими выделениями растение-хозяина (пшеницу, овес, просо, рожь, ячмень, хлопчатник, кукурузу, горох, фасоль) от корневых гнилей.

Почвенные водоросли обогащают почву органическими веществами.

Лишайники инициируют почвообразование, выделяя органические кислоты, ускоряющие химическое выветривание минерального субстрата. Продукты выветривания вместе с отмершими остатками лишайников образуют примитивную почву.

Корни высших растений - системоорганизующий фактор почвы, они формируют ризосферу (корнеобитаемую толщу почвы) - биологически активную зону почвенного профиля, приют разнообразной почвенной биоты.

Простейшие (амебы, радиолярии, инфузории и др.) активно преобразовывают органическое вещество, в том числе и гумус.

Ногохвостки, клещи, нематоды измельчают растительные остатки; регулируют численность некоторых микроорганизмов (питаются бактериями).

Слизни проникают вглубь почвы, обогащая почвенный профиль органикой и улучшая его структуру.

Жуки регулярно мигрируют (суточные и сезонные миграции), способствуя разрыхлению и аэрации почвы; хищные насекомые регулируют численность других видов насекомых. Майские жуки измельчают и перемещают вглубь почвы органические вещества. Личинки мух измельчают растительные остатки, а отходы их жизнедеятельности - субстрат для микроорганизмов.

Дождевые черви увеличивают водопроницаемость почвы; обеззараживают навоз; обогащают почву физиологически активными веществами.

Позвоночные (суслики, кроты и другие) измельчают почвенный материал, перемешивают его. Через ходы этих животных осуществляется естественный дренаж почвы.

Чтобы восстановить естественное плодородие почвы, следует вернуть в нее органику.

Для улучшения плодородия почв надо искать наиболее доступные резервы органических удобрений. Это могут быть нетоварная часть урожая (солома, остатки стеблевых культур), вермикомпост. Сюда же относятся и специально посеянные сидераты. Примерно 5 т нетоварной части урожая по эффективности соответствуют 1 т навоза. Кроме того, надо повышать коэффициент гумификации органических остатков. Процесс гумификации зависит от наличия почвенной биоты и от реакции почвенной среды. Исследования показывают, что наибольшие коэффициенты гумификации наблюдались при внесении органических удобрений в верхний слой почвы (на глубину до 10 см) и реакции почвенного раствора около нейтральной.

Количество органических удобрений должно соответствовать количеству почвенной биоты (эффективных микроорганизмов, дождевых червей и т. д.), которая должна успевать перерабатывать органические вещества. В неактивной почве процессы гумификации не идут. Следствие химизации - неактивная почва с малым количеством биоты. При глубокой вспашке с переворотом пласта грунтовая биота верхних слоев почвы, которая активно дышит кислородом (аэробы), оказывается в глубине, где мало кислорода, и в результате погибает. Анаэробные существа, наоборот, попадают на поверхность, где также не могут жить. Некоторые экологически ценные микроорганизмы не выдерживают солнечного света, например клубеньковые азотфиксаторы (симбионты бобовых растений).

Минимальное поверхностное возделывание почвы обеспечивает оптимальные условия деятельности почвенной биоты.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Введение


Почва - основа природы суши. Она служит средой обитания для многих микроорганизмов, животных, а также в ней закрепляются корни растений и гифы грибов. Первостепенными факторами, важными для почвенных обитателей, являются ее структура, химический состав, влажность, наличие питательных веществ.

Эдафические факторы - совокупность физических и химических свойств почв, способных оказывать влияние на живые организмы (растения).

Общеизвестно, что от эдафических (почвенных) условий зависят характер развития растений и их распределение. Однако далеко не всегда легко решить, какие именно свойства почвы в каждом отдельном случае влияют на растения. К эдафическим факторам относится реакция почвы, солевой режим почвы, водный, воздушный и тепловой режимы, плотность и мощность почвы, её гранулометрический состав, а также к ним можно отнести растения и животных, населяющих почву. В общем, все эдафические факторы могут быть разделены на две группы: физические и химические.

Степень и характер влияния каждого из этих факторов очень различны, большинство из этих факторов все время изменяется, поэтому важно учитывать проявление того или иного из них не только в определенный момент, а важно знать весь его режим, его изменение в течение целого года или даже нескольких лет. Поэтому для большинства этих факторов надо говорить об их режиме.

Изучение эдафических факторов и определение их роли в жизни растений и почвенной биоты является актуальной темой, так как эти факторы влияют на организмы, живущие в почве, играют важную роль в формировании плодородия почв и служат одним из важных факторов почвообразования.


1. Почва как среда обитания и основные эдафические факторы

эдафический почва растение

Почва - это поверхностный слой литосферы, твёрдой оболочки Земли, контактирующий с воздушной средой. Почва - плотная среда, состоящая из отдельных твёрдых частиц разной величины. Твёрдые частицы окружены тонкой плёнкой воздуха и воды. Поэтому почву рассматривают как трёхфазную систему.

Поверхностный слой почвы достаточно рыхлый. Он пронизан системой полостей и ходов и содержит большое количество мертвой органики (растительный опад, гумус). Это горизонт А - перегнойно-аккумулятивный. Глубже расположен очень плотный горизонт вымывания (иллювиальный) - В. Его твёрдые частицы цементируются коллоидами из горизонт А. Под ним расположен горизонт С - материнская (почвообразующая) порода (рисунок 1). Механическая неоднородность почвенных горизонтов определяет специфику абиотических факторов. Так, с глубиной в почве ухудшается аэрация. Количество кислорода снижается, увеличивается содержание углекислого газа, а также других газов, образующихся при разложении органических веществ. В верхних горизонтах почвы концентрируются вещества, необходимые для питания растений - фосфор, азот, кальций, и многие другие. Свет в почву практически не проникает.


Рисунок 1 - Горизонты почвы

Колебание температуры (сезонные и суточные) выражаются не только в поверхностном слое почвы. На глубине 1-1,5 м температура практически стабильна (4-5°С).

Режим влажности в почве более благоприятен для животных, чем в наземно-воздушной среде, особенно для микроскопических организмов, обитающих в воздушно водной плёнке между твёрдых частиц почвы. Даже в сухой почве сохраняется плёночная вода, находящаяся в почвенном воздухе, а испаряется, прежде всего, вода, заполняющая почвенные поры (капиллярная) и пустоты (гравитационная).

Почва обладает также своеобразными биологическими особенностями, поскольку тесно связана с жизнедеятельностью организмов. Верхние слои ее содержат массу корней растений. В процессе роста, отмирания и разложения они разрыхляют почву и создают определенную структуру, а вместе с тем и условия для жизни других организмов .

Роющие животные перемешивают почвенную массу, а после смерти становятся источником органического вещества для микроорганизмов. Благодаря специфическим свойствам почва выполняет одну из важных функций в жизни различных почвенных организмов и, прежде всего растений, обеспечивая им водоснабжение и минеральное питание.

В почве различают воду:

а) биологически полезную;

б) биологически бесполезную.

Биологически полезной является вода, свободно передвигающаяся по капиллярам почвы и бесперебойно снабжающая растения влагой. Значение почвы в водоснабжении растений тем выше, чем она легче отдает им воду, что зависит от структуры почвы и степени набухаемости ее частиц.

Различают сухость почвы:

а) физическую;

в) физиологическую.

При физической сухости почва испытывает недостаток влаги. Происходит это при атмосферной засухе, что обычно наблюдается в сухом климате и в местах, где почва увлажняется только за счет атмосферных осадков. Физиологическая сухость почвы - явление более сложное. Оно возникает в результате физиологической недоступности физически доступной воды. Растения даже на влажных почвах могут испытывать дефицит воды, когда низкая температура почвенного покрова, другие неблагоприятные условия препятствуют нормальному функционированию корневой системы. Физиологически сухими являются и сильно засоленные почвы. Из-за высокого осмотического давления почвенного раствора вода засоленных почв для многих растений оказывается недоступной.

Почва играет важную роль в минеральном питании растений. Вместе с водой в растения через корневую систему поступает ряд минеральных веществ, находящихся в почве в растворенном состоянии. Однако корневое питание растений - это не простое всасывание веществ, а сложный биохимический процесс, в котором особую роль играют почвенные микроорганизмы, выделения которых усваиваются корневой системой. Поэтому большинство высших растений имеют микоризу, значительно увеличивающую активную поверхность корней.

Важную роль в росте и развитии растений играет органическое вещество почвы. Перегной, или гумус, для почвенных обитателей является основным источником необходимых для жизни минеральных соединений и энергии. Он обусловливает плодородие почв и их структуру. Процессы минерализации органических веществ и перегноя обеспечивают постоянное поступление в почвенный раствор таких важнейших элементов питания растений, как азот, фосфор, сера, кальций, калий, микроэлементы. Гумус служит источником физиологически активных соединений (витамины, органические кислоты, полифенолы), которые стимулируют рост растений. Перегнойные вещества обеспечивают также водоустойчивую структуру почв, что создает благоприятный для растений вводно-воздушный режим.

Микроорганизмы, растения и животные, обитающие в почве, находятся в постоянном взаимодействии друг с другом, а также со средой обитания. Эти отношения очень сложны и многообразны. Животные и бактерии потребляют растительные углеводы, белки, жиры. Грибы разрушают целлюлозу, в частности древесину. Хищники питаются тканями своих жертв. Благодаря этим взаимоотношениям и в результате коренных изменений физических, химических и биохимических свойств горной породы в природе постоянно происходят почвообразовательные процессы

Эдафогенные (греческое слово «эдафос» означает «земля» или «почва»), или эдафические факторы - это свойства почвы, оказывающие экологическое воздействие на живые организмы . Важнейшими экологическими факторами, характеризующими почву как среду обитания, можно разделить на физические и химические.

К физическим факторам относятся влажность, температура, структура и пористость.

Влажность , а точнее доступная влажность для растений, зависит от сосущей силы корневой системы растений и от физического состояния самой воды. Практически недоступна часть плёночной воды, прочно связанная с поверхностью частицы. Легкодоступна свободная вода, но она довольно быстро уходит в глубокие горизонты, и прежде всего из крупных пор - быстро движущаяся вода, а затем из мелких - медленно движущаяся вода, связанная и капиллярная влага удерживается в почве длительное время.

Иными словами, доступность влаги зависит от водоудерживающей способности почв. Сила удерживающей способности тем выше, чем почва глинистее и чем она суше. При очень низкой влажности если и остаётся, то только недоступная для растений прочно связная вода, и растение погибает, а гигрофильные животные (дождевые черви) перебираются в более влажные глубокие горизонты и там впадают в «спячку» до выпадения дождей, однако многие членистоногие приспособлены к активной жизни даже при предельной сухости почвы.

Температура почвы зависит от внешней температуры, но, благодаря низкой теплопроводности почвы, температурный режим довольно стабилен и уже на глубине 0,3 м амплитуда колебания температуры менее 2°С, что важно для почвенных животных - нет необходимости перемещаться вверх-вниз в поисках более комфортной температуры. Суточные колебания ощутимы до глубины 1 м. Летом температура почвы ниже, а зимой - выше, чем воздуха.

Структура и пористость почвы обеспечивает её хорошую аэрацию. В почве активно перемещаются черви, особенно в глинистой, суглинистой и песчаной, увеличивая пористость. В плотных почвах затрудняется аэрация, и кислород может стать лимитирующим фактором, однако большинство почвенных организмов способны жить и в плотных глинистых почвах.

Важнейшими экологическими факторами являются и химические такие как, реакция среды и засолённость.

Реакция среды - очень важный фактор для многих животных и растений. В сухом климате преобладают нейтральные и щелочные почвы, во влажных районах - кислые.

Засоленными называют почвы с избыточным содержанием водорастворимых солей (хлоридов, сульфатов, карбонатов). Они возникают вследствие вторичного засоления почв при испарении грунтовых вод, уровень которых поднялся до почвенных горизонтов. Среди засолённых почв выделяют солончаки и солонцы .


2. Роль почвы в жизнедеятельности живых организмов


Благодаря вышеперечисленным свойствам, почва обеспечивает живущим в ней организмам водоснабжение и минеральное питание. Недостаток воды в почве угнетает почвенные организмы. Сухость почвы принято подразделять на физическую и физиологическую. Физическая - при атмосферной засухе; физиологическая возникает в результате физиологически недоступной физически имеющейся воды. Так, вода некоторых болот, несмотря на её большое количество, недоступна для растений из-за высокой кислотности и других факторов. Физиологически сухими являются и сильно засоленные почвы.

Вместе с водой корневая система растений подаёт в них и минеральные вещества, что в совокупности с участием почвенных микроорганизмов являет собой сложный биохимический процесс.

Важную роль в росте и развитии растений играют органические вещества почвы, состоящие из продуктов гумификации (аэробное разложение растительных и животных останков). Образующийся при этом перегной (гумус) является основным источником минеральных соединений и энергии и обусловливает плодородие и структурность почвы. Гумус служит также источником активных физиологических соединений (витамины, органические кислоты). Главным энергетическим материалом почвы является органическое вещество корней, от количества которого зависит численность и видовое разнообразие почвенных обитателей.

Большой вклад в обеспечение круговорота веществ в почве вносят почвенные животные, которые перемешивают и структурируют её .

Почвенный покров образует одну из геофизических оболочек Земли - педосферу . Именно в почве укореняются наземные растения, в ней обитают мелкие животные, огромная масса микроорганизмов. В результате почвообразования именно в почве концентрируются жизненно необходимые организмам вода и элементы минерального питания в доступных для них формах химических соединений. Таким образом, можно выделить важные функции почвы, которые имеют важное значение в жизнедеятельности живых организмов:

почва является важнейшим условием фотосинтетической деятельности растений. Этим путем аккумулируется на Земле колоссальное количество энергии. И в настоящее время и, вероятно, еще долго в будущем именно система почва - растения - животные будет главным поставщиком трансформированной энергии Солнца человечеству;

обеспечение постоянного взаимодействия большого геологического и малого биологического круговоротов веществ, так как биогеохимические циклы элементов, в том числе таких важнейших биофилов, как углерод, азот, кислород, осуществляются через почву. Эти элементы в разной форме и в разных соотношениях участвуют в синтезе органического вещества растениями;

регулирование биосферных процессов, в частности плотности и продуктивности живых организмов на земной поверхности. Почва обладает не только плодородием, она имеет и свойства, лимитирующие жизнедеятельность тех или иных организмов;

в почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью живых организмов.

Таким образом, почва - условие существования жизни, но одновременно почва - следствие жизни на Земле (рисунок 2) .


Рисунок 2 - Почва


3. Отношение организмов к почве


3.1 Распределение животных в почве


Несмотря на неоднородность экологических условий в почве, она выступает как достаточно стабильная среда, особенно для подвижных организмов. Крутой градиент температур и влажности в почвенном профиле позволяет почвенным животными путем незначительных перемещений обеспечить себе подходящую экологическую обстановку.

Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда. Для микроорганизмов особое значение имеет огромная суммарная поверхность почвенных частиц, потому что на них адсорбируется подавляющая часть микроорганизмов. Сложность почвенной среды создает большое разнообразие условий для самых разных функциональных групп: аэробов, анаэробов, потребителей органических и минеральных соединений. Для распределения микроорганизмов в почве характерна мелкая очаговость, поскольку на протяжении нескольких миллиметров могут сменяться разные экологические зоны .

По степени связи с почвой как средой обитания животных объединяют в три экологические группы:

геобионты - животные, постоянно обитающие в почве. Весь цикл их развития протекает в почвенной среде. Геобионтами являются дождевые черви (рисунок 3), многие первично-бескрылые насекомые;


Рисунок 3 - Дождевой червь


геофилы - животные, часть цикла развития которых (чаще одна из фаз) обязательно проходит в почве. К этой группе принадлежит большинство насекомых: саранчовые, ряд жуков, комары-долгоножки (рисунок 4). Их личинки развиваются в почве. Во взрослом же состоянии это типичные наземные обитатели;


Рисунок 4 - Комар-долгоножка


3 геоксены - животные, иногда посещающие почву для временного укрытия или убежища. К геоксенам из насекомых относятся таракановые, многие полужесткокрылые, некоторые развивающиеся вне почвы жуки. Сюда же относятся грызуны и другие млекопитающие, живущие в норах (рисунок 5).

Рисунок 5 - Крот


Почвенных обитателей в зависимости от их размеров и степени подвижности можно разделить на несколько групп:

А) микробиотип, микробиота - это почвенные микроорганизмы, составляющие основное звено детритной пищевой цепи, представляют собой как бы промежуточное звено между растительными остатками и почвенными животными. Сюда относятся, прежде всего, зеленые (Chlorophyta ) и сине-зеленые (Cyanophyta ) водоросли, бактерии (Bacteria ), грибы (Fungi ) и простейшие (Protozoa ). По существу можно сказать, что это водные организмы, а почва для них - это система микроводоемов. Они живут в почвенных порах, заполненных гравитационной или капиллярной водой, как и микроорганизмы, часть жизни могут находиться в адсорбированном состоянии на поверхности частиц в тонких прослойках пленочной влаги. Многие из этих видов обитают и в обычных водоемах. Вместе с тем почвенные формы обычно мельче пресноводных и, кроме того, отличаются способностью значительное время находиться в инцистированном состоянии, пережидая неблагоприятные периоды. Так, пресноводные амебы имеют размеры 50-100 мкм, почвенные - 10-15 мкм. Жгутиковые не превышают 2-5 мкм. Почвенные инфузории также имеют мелкие размеры и могут в значительной степени менять форму тела.

Для данной группы животных почва представляется как система мелких пещер. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет им дышать через покровы тела. Многие виды животных этой группы не имеют трахейной системы и весьма чувствительны к высыханию. Средством спасения от колебаний влажности воздуха для них является передвижение вглубь. Более крупные животные имеют некоторые приспособления, которые позволяют переносить временное снижение влажности почвенного воздуха: защитные чешуйки на теле, частичную непроницаемость покровов, сплошной толстенный панцирь. Периоды затопления почвы водой животные переживают, как правило, в пузырьках воздуха. Воздух задерживается вокруг их тела из-за несмачиваемости покровов, снабженных у большинства из них волосками, чешуйками. Пузырек воздуха служит для мелкого животного своеобразной «физической жаброй». Дыхание осуществляется за счет кислорода, диффундирующего в воздушную прослойку из окружающей среды.

Животные мезобиотипов и микробиотипов способны переносить зимнее промерзание почвы, что особенно является важным, так как большинство из них не может уходить вниз из слоев, подвергающихся воздействию отрицательных температур.

В) макробиотип, макробиота - это крупные почвенные животные, с размерами тела от 2 до 20 мм. К данной группе относятся личинки насекомых, многоножки, энхитреиды, дождевые черви. Почва для них является плотной средой, оказывающей значительное механическое сопротивление при движении. Они передвигаются в почве, расширяя естественные скважины путем раздвижения почвенных частиц либо роя новые ходы. Оба способа передвижения накладывают отпечаток на внешнее строение животных. У многих видов развиты приспособления к экологически более выгодному типу передвижения в почве - рытью с закупориванием за собой хода.

Газообмен большинства видов данной группы осуществляется при помощи специализированных органов дыхания, но наряду с этим дополняется газообменом через покровы. У дождевых червей и энхитреид отмечается исключительно кожное дыхание.

Роющие животные могут уходить из слоев, где возникает неблагоприятная обстановка. К зиме и в засуху они концентрируются в более глубоких слоях, большей частью в нескольких десятках сантиметров от поверхности.

Г) мегабиотип, мегабиота - это крупные землерои, главным образом из числа млекопитающих.

Многие из них проводят в почве всю жизнь (златокроты в Африке, слепушонки, цокоры, кроты Евразии, сумчатые кроты Австралии, слепыши). Они прокладывают в почве целые системы ходов и нор. Приспособленность к роющему подземному образу жизни находит отражение во внешнем облике и анатомических особенностях этих животных: у них недоразвиты глаза, компактное вальковатое тело с короткой шеей, короткий густой мех, сильные компактные конечности с крепкими когтями .

В зависимости от типа субстрата (среды) выделяют следующие группы животных:

псаммофилы - животные, заселяющие сыпучие подвижные пески. К типичным псаммофилам относятся мраморные хрущи (рисунок 6), личинки муравьиных львов и скакунов, большое количество перепончатокрылых. Почвенные животные, обитающие в подвижных песках, имеют специфические приспособления, которые обеспечивают им передвижение в рыхлом грунте;


Рисунок 6 - Мраморный хрущ


2 галофилы - животные, приспособившиеся к жизни на засоленных почвах. Обычно в засоленных почвах фауна в количественном и качественном отношении сильно обедняется. Например, исчезают личинки щелкунов, хрущей, а вместе с тем появляются специфические галофилы, которые не встречаются в почвах обычной засоленности. Среди них можно отметить личинки некоторых пустынных жуков-чернотелок (рисунок 7);


Рисунок 7 - Жук-чернотелка


обитателей нор - животные постоянные обитатели почвы. К данной группе животных относятся барсуки, сурки, суслики, тушканчики (рисунок 8).


Рисунок 8 - Суслик


Они кормятся на поверхности, однако размножаются, зимуют, отдыхают, спасаются от опасности в почве. Ряд других животных использует их норы, находя в них благоприятный микроклимат и укрытие от врагов. Обитатели нор, или норники, имеют черты строения, характерные для наземных животных, но в то же время обладают рядом приспособлений, связанных с роющим образом жизни. Так, для барсуков характерными чертами являются длинные когти и сильная мускулатура на передних конечностях, узкая голова, небольшие ушные раковины .


.2 Отношение растений к почве


Специфические растительные ассоциации, формируются в связи с разнообразием условий мест обитаний, включая и почвенные, а также и в связи с избирательностью по отношению к ним растений в определенной ландшафтно-географической зоне. Следует учитывать, что даже в одной зоне в зависимости от её рельефа, уровня грунтовых вод, экспозиции склона и ряда других факторов создаются неодинаковые почвенные условия, которые отражаются на типе растительности.

Важнейшим свойством почвы является ее плодородие, которое определяется в первую очередь содержанием гумуса, макро- и микроэлементов (азот, фосфор, калий, кальций, магний, сера, железо, медь, бор, цинк, молибден). Каждый из этих элементов играет свою роль в структуре и обмене веществ растения и не может быть заменен полностью другим.

Классификация растений по отношению к плодородию почв:

эутрофные (эвтрофные), распространенные преимущественно на плодородных почвах;

мезотрофные виды, промежуточная группа;

олиготрофные, довольствующиеся небольшим количеством питательных веществ.

Выделяют ещё одну классификацию растений по отношению к химическому составу почв:

нитрофилы - растения, особенно требовательные к повышенному содержанию азота в почве. Обычно они поселяются там, где есть дополнительные источники органических отходов, а, следовательно, и азотного питания. Это растения вырубок (малина, хмель вьющийся) (рисунок 9), мусорные, или виды - спутники жилья человека (крапива, щирица). К нитрофилам относятся многие зонтичные, поселяющиеся на опушках леса. В массе нитрофилы поселяются там, где почва постоянно обогащается азотом, например, через экскременты животных. На пастбищах, в местах скопления навоза, пятнами разрастаются нитрофильные травы (крапива, щирица);


Рисунок 9 - Хмель вьющийся


2кальциефилы-растения карбонатных почв, содержащих более 3% карбонатов. Кальций - важнейший элемент, не только входит в число необходимых для минерального питания растений, но и является важной составной частью почвы. Из деревьев кальциефильны лиственница сибирская, бук, ясень (рисунок 10);


Рисунок 10 - Ясень


кальциефобы - растения, избегающие почв с большим содержанием извести. Это сфагновые мхи, болотные вересковые. Среди древесных пород - береза бородавчатая, каштан (рисунок 11);


Рисунок 11 - Каштан


Растения неодинаково относятся к кислотности почвы. Выделяют следующие виды растений по отношению к кислотности почв:

ацидофилы- растения, предпочитающие кислые почвы с небольшим значением рН =3,5-4,5 (вереск, белоус, щавелек малый) (рисунок 12);


Рисунок 12 - Вереск


базифилы - растения щелочных почв с рН =7,0-7,5 (мать-и-мачеха, горчица полевая) (рисунок 13);


Рисунок 13 - Мать-и-мачеха


нейтрофилы- растения почв с нейтральной реакцией (лисохвост луговой, овсяница луговая) (рисунок 14).


Рисунок 14 - Овсяница луговая


Классификация растений в зависимости от типа среды:

галофиты- растения, приспособившиеся к произрастанию на почвах с высоким содержанием солей, называют. Галофиты имеют высокое осмотическое давление, позволяющее им использовать почвенные растворы, так как сосущая сила корней превосходит сосущую силу почвенного раствора. Некоторые галофиты выделяют излишки солей через листья или накапливают их в своем организме. Поэтому иногда их используют для получения соды и поташа. Типичными галофитами являются солерос европейский, сарсазан шишковатый (рисунок 15);


Рисунок 15 - Солерос европейский


2 гликофиты- растения, не выносящие засоления почв;

псаммофиты- растения, адаптированные к сыпучим подвижным пескам. Растения сыпучих песков во всех климатических зонах имеют общие особенности морфологии и биологии, у них исторически выработались своеобразные приспособления. Так, древесные и кустарниковые псаммофиты при засыпании их песком образуют придаточные корни. На корнях развиваются придаточные почки и побеги, если растения обнажаются при выдувании песка (белый саксаул, кандым, песчаная акация и другие типичные пустынные растения) (рисунок 16). Некоторые псаммофиты спасаются от заноса песком быстрым ростом побегов, редукцией листьев, нередко увеличена летучесть и пружинистость плодов. Плоды передвигаются вместе с движущимся песком и не засыпаются им. Псаммофиты легко переносят засуху благодаря различным приспособлениям: чехлы на корнях, опробковение корней, сильное развитие боковых корней. Большинство псаммофитов безлистные или имеют четко выраженную ксероморфную листву. Это значительно сокращает транспирационную поверхность;


Рисунок 16 - Кандым


оксилофитами- растения, произрастающие на торфяных болотах (багульник, росянка) (рисунок 17). Торф - особая разновидность почвенного субстрата, образовавшегося в результате неполного распада растительных остатков в условиях повышенной влажности и затрудненного доступа воздуха;


Рисунок 17 - Багульник


литофиты - растения, обитающие на камнях, скалах, каменистых осыпях, в жизни которых преобладающую роль играют физические свойства субстрата. К этой группе принадлежат, прежде всего, первые после микроорганизмов поселенцы на скальных поверхностях и разрушающихся горных породах: автотрофные водоросли, листовые лишайники, выделяющие продукты метаболизма, способствующие разрушению горных пород и тем самым играющие существенную роль в длительном процессе почвообразования (рисунок 18);


Рисунок 18 - Листовой лишайник


хасмофиты - растениями щелей. Хасмофитами являются виды рода камнеломка, кустарники и древесные породы (можжевельник, сосна) (рисунок 19). Они обладают своеобразной формой роста (искривленной, ползучей, карликовой) .


Рисунок 19 - Можжевельник


4. Роль микроорганизмов, высших растений и животных в почвообразовательных процессах


4.1 Роль зеленых растений в почвообразовании


Основное значение в почвообразовании принадлежит зеленым растениям, особенно высшим. Прежде всего, их роль заключается в том, что образование органического вещества связано с фотосинтезом, который осуществляется только в зеленом листе растения. Поглощая углекислоту воздуха, воду, азот и зольные вещества из породы (впоследствии превращающейся в почву), зеленые растения, используя лучистую энергию солнца, синтезируют разнообразные органические соединения.

После отмирания растений созданное ими органическое вещество поступает в почву и тем самым ежегодно снабжает ее элементами зольной и азотной пищи и энергией. Количество аккумулированной солнечной энергии в синтезированном органическом веществе весьма велико и составляет примерно 9,33 ккал на 1 г углерода. При ежегодном опаде растительных остатков от 1 до 21 т на 1 га (соответствует 0,5-10,5 т углерода) в них концентрируется около 4,7-106 - 9,8-107 ккал солнечной энергии. Это поистине огромные размеры энергии, которая используется в ходе почвообразования.

Различные виды зеленых растений - деревянистые и травянистые - различаются по количеству и качеству созданной ими биомассы и размерам поступления ее в почву.

У деревянистых растений ежегодно отмирает только часть органической массы, образовавшейся за лето (хвоя, листва, ветки, плоды), и обогащение почвы органическим веществом идет преимущественно с поверхности. Другая же часть, нередко более значительная, остается в живом растении, являясь материалом для утолщения стебля, ветвей и корней.

У травянистых однолетних растений вегетативные органы существуют один год и растение ежегодно отмирает, за исключением созревших семян; у многолетних травянистых растений остаются подземные побеги с узлами кущения, корневища и т.д., из которых на следующий год развивается новая надземная часть растения с новой корневой системой. Поэтому травянистая растительность приносит в почву органическое вещество в виде ежегодно отмирающей надземной части и корней. Мхи, которые не имеют корневой системы, обогащают почву органическим веществом с поверхности.

Характер поступления растительных остатков в почву определяет дальнейший ход преобразования органических соединений, их взаимодействие с минеральной частью почвы, что сказывается на процессах формирования почвенного профиля, составе и свойствах почвы.

Наибольшее накопление органического вещества происходит в лесных сообществах. Так, в еловых лесах северной и южной тайги общая биомасса составляет 100-330 г. на 1 га, в сосняках - 280, в дубравах - 400 т на 1 га. Еще большая масса органического вещества образуется в субтропических и влажных вечнозеленых тропических лесах - более 400 т на 1 га.

Травянистая растительность характеризуется значительно меньшей продуктивностью. Северные луговые степи наращивают биомассу до 25 т на 1 га, в сухих степях она составляет 10 т, а в полукустарниковых пустынных степях эта величина снижается до 4,3 т.

В арктических тундрах биомасса находится на уровне пустынных сообществ, а в кустарниковых тундрах достигает уровня луговых степей.

Размеры поступающей в почву органической массы обусловлены видом растительности и годовым количеством опада, который зависит от прироста и соотношения надземной массы и корней. Так, в еловом лесу средний годовой растительный опад составляет 3,5-5,5 т на 1 га, в сосняке - 4,7, в березняке - 7,0, в дубняке - 6,5 т на 1 га.

В субтропических и тропических лесах ежегодный опад весьма велик - 21-25 т на 1 га.

В луговых степях ежегодный опад составляет 13,7 т на 1 га, в сухих степях - 4,2 т, в пустынных, полукустарниковых степях - 1,2 т. При этом основная масса - 70-87% - мертвого опада растительности луговых степей приходится на корневые системы трав. Этим в известной мере и объясняется большой запас гумуса в почве под травянистой растительностью.

Большая роль зеленых растений в почвообразовании заключается и в том, что своей жизнедеятельностью они обусловливают один из самых важных процессов - биологическую миграцию и концентрацию зольных элементов и азота в почве, а в совокупности с микроорганизмами - биологический круговорот веществ в природе.

Под лесами умеренной зоны потребление и ежегодный возврат с опадом суммы зольных элементов и азота составляют соответственно 118-380 и 100-350 кг на 1 га. При этом березняки и дубравы создают более интенсивный круговорот веществ, чем сосняки и ельники. Поэтому и формирующиеся под ними почвы будут более плодородными.

Под луговыми травянистыми ассоциациями количество зольных элементов и азота, вовлекаемого в биологический круговорот, значительно больше, чем в различных типах лесов умеренных широт, причем потребление и возврат веществ с опадом в почву уравновешены и составляют около 682 кг на 1 га. Естественно, что и почвы под луговыми степями плодороднее, чем под лесами.

На процессы разложения органических остатков большое влияние оказывает их химический состав.

Органические остатки состоят из разнообразных зольных элементов, углеводов, белков, лигнина, смол, дубильных веществ и других соединений, причем содержание их в опаде разных растений неодинаково. Все части большинства древесных пород богаты дубильными веществами и смолами, содержат много лигнина, мало зольных элементов и белков. Поэтому остатки древесных растений разлагаются медленно и преимущественно грибами. В отличие от деревьев травянистая растительность, за небольшим исключением, не содержит дубильных веществ, богаче белковыми веществами и зольными элементами, благодаря чему остатки этой растительности легко подвергаются в почве бактериальному разложению.

Кроме того, между этими группами растений существуют еще и другие различия. Так, все деревянистые растения откладывают в течение года отмершие листья, хвою, ветки, побеги, главным образом на поверхности почвы. В почвенной толще за год деревья оставляют сравнительно незначительную часть мертвого органического вещества, поскольку их корневая система многолетняя.

Травянистые же растения, у которых ежегодно отмирают все надземные вегетативные органы и частично корни, откладывают мертвое органическое вещество, как на поверхности почвы, так и на различной глубине.

Травянистую растительность подразделяют на три группы: луговая, степная и болотная.

У луговых растений - тимофеевки луговой, ежи сборной, мятлика, овсяницы, лисохвоста, различных клеверов и других многолетних трав - надземная масса отмирает ежегодно в начале зимы с наступлением устойчивых морозов.

Степная растительность отмирает большей частью летом из-за физической сухости почвы. К этому времени степная флора обычно полностью заканчивает цикл развития и дает жизнеспособные семена. Остатки растений попадают в условия недостаточной влажности почвы, т.е. в условия, противоположные тем, в которых оказывается органическая масса луговой растительности в момент отмирания. Глубокой осенью, к началу отмирания луговой растительности, все промежутки почвы, как правило, заполнены водой, и в связи с этим доступ воздуха в почву полностью прекращен. В аналогичных условиях оказываются луговые растения и в весенний период, когда почва оттаивает, при этом количество воды в почве достигает максимума, а количество воздуха - минимума. Разложение растительных остатков, следовательно, идет без доступа воздуха, медленно, что приводит к накоплению органического вещего вещества в почве.

Еще более медленно разлагаются остатки болотной растительности, испытывающие постоянное избыточное увлажнение.

Но как бы пи отличались друг от друга по тем или иным особенностям отдельные группы зеленых растений, основное значение их в почвообразовании сводится к синтезу органического вещества из минеральных соединений. Органическое вещество, играющее в плодородии почв большую роль, может быть создано только зелеными растениями .


.2 Роль микроорганизмов в почвообразовании


Наряду с зелеными растениями большую роль в почвообразовательном процессе играют микроорганизмы. Это преимущественно одноклеточные, лишенные хлорофилла организмы, которые не способны к непосредственному усвоению солнечной энергии и в подавляющем большинстве черпают необходимую им энергию путем разложения уже готовых органических веществ, созданных высшими зелеными растениями.

Таким образом, деятельность микроорганизмов противоположна деятельности зеленых растений: в то время как зеленые растения синтезируют органическое вещество из минеральных соединений, воды и углекислоты, низшие организмы разлагают это органическое вещество на составные части, используя выделяющуюся при этом энергию для своей жизнедеятельности.

Микроорганизмы распространены в природе почти повсеместно. Они встречаются в почве и воздухе, на высоких горах и голых скалах, в пустыне и в глубинах Ледовитого океана.

Развитие микроорганизмов в почве тесно связано с органическим веществом: чем богаче почва растительными остатками, тем больше микроорганизмов содержится в ней. Особенно богаты ими культурные, хорошо обрабатываемые и удобряемые навозом почвы.

В 1 г дерново-подзолистых почв содержится 300-400 млн. бактерий; каштановых почв - 1-1,5 млрд.; черноземов, очень богатых органическим веществом, - 2-3 млрд. Несмотря на ничтожно малый размер микроорганизмов, общий вес их в почве нередко достигает 1-3 т на 1 га.

Микроорганизмы неравномерно распределены в почвенной толще. Наиболее богаты ими верхние слои почвы в пределах примерно 30-40 см, с глубиной число микроорганизмов постепенно уменьшается.

Большое влияние на распределение микрофлоры в почве оказывает корневая система растений. Она постоянно выделяет в окружающую среду различного рода органические и минеральные соединения, которые служат хорошим источником питания для микроорганизмов. В прикорневой зоне растений обычно создаются наиболее благоприятные для микроорганизмов водный и воздушный режимы. Эта прикорневая зона называется ризосферой. В ней число микроорганизмов в сотни, а иногда в тысячи раз больше, чем вне зоны расположения корней. Микроорганизмы покрывают корневую систему растений почти сплошным слоем. Обилие микрофлоры в ризосфере и во всей почвенной толще играет большую роль в развитии почвенного плодородия .

К мироогранизмам относят бактерий, которые делятся на:

автотрофные бактерии, они поглощают углерод из углекислоты, используя энергию окисления некоторых минеральных соединений (хемоавтотрофы);

гетеротрофные бактерии, они используют энергию Солнца, осуществляя фотосинтез (фотоавтотрофы).

Азотосодержащие органические соединения в результате процесса аммонификации под влиянием разложения бактериями образуют аммиак. Он может частично поглощаться почвой, преобразовываясь в нитраты или же в молекулярный азот. В процессе нитрификации аммиак первоначально превращается в азотистую кислоту, а позже в азотную. Азотная кислота, соединяясь с основаниями, находящимися в почве, дает нитраты, которые используются растениями в качестве азотной пищи.

Большое значение в повышении плодородия почв принадлежит азотофиксирующим бактериям. Они делятся на:

свободноживущие бактерии, которые участвуют в разложении органического вещества до минерального;

клубеньковые бактерии, которые заселяют клетки на корнях бобовых растений (клевер, фасоль), в результате действия которых происходит микробиологическое накапливание азота из атмосферы;

гетеротрофные бактерии, которые поглощают углерод из готовых органических соединений, разлагая сложные соединения на простые. В связи с их деятельностью разрушается мертвое органическое вещество с образованием минеральных веществ (редуценты). В результате биохимических превращений азот, содержащийся в белках органических веществ, под влиянием гетеротрофных бактерий становится доступным усвоению растениями.

Микроорганизмы, разлагающие органические остатки в почве, разделяются на три основные группы: аэробные бактерии, анаэробные бактерии и грибы.

Аэробные бактерии могут жить и размножаться только при свободном доступе воздуха. Недостаточное поступление воздуха угнетающе действует на жизнедеятельность этих бактерий, а полное прекращение доступа воздуха вызывает гибель.

Анаэробные бактерии развиваются без доступа свободного кислорода. Анаэробы разделяются на:

а) облигатные анаэробы (лат. obligatus - обязательный, непременный), которые могут жить только при полном отсутствии кислорода;

в) факультативные анаэробы (pfacultatif - возможный, необязательный), способные жить как в отсутствие кислорода, так и в присутствии его.

Для дыхания анаэробные бактерии используют кислород различных окисленных соединений, производя при этом восстановительную работу. Поэтому восстановительные процессы весьма характерны для анаэробных почвенных условий.

В рыхлых, хорошо проветриваемых почвах всегда преобладает аэробный процесс разложения органического вещества. Наоборот, в почвах уплотненных, тяжелых или заболоченных, со сплошным залеганием органического вещества неизбежно будут доминировать анаэробные процессы. В верхних слоях почвы, куда свободно проникает воздух, идут главным образом аэробные процессы, в нижних слоях с затрудненным газообменом - анаэробные. Больше того, в каждом отдельном, более или менее уплотненном, комочке почвы могут одновременно протекать оба процесса: внутри комочка анаэробный, в поверхностных частях аэробный.

Аэробный процесс сопровождается выделением тепловой энергии, анаэробный протекает без заметного повышения температуры.

Благоприятные условия для культурных растений могут быть созданы в почве только при одновременном развитии аэробного и анаэробного процессов, что возможно только в рыхлых почвах, с хорошей аэрацией .


4.3 Водоросли и лишайники в почвообразовательном процессе


Среди почвенной микрофлоры значительное место занимают водоросли (таблица 1). Чаще всего в почве встречаются жгутиковые, зеленые, сине-зеленые и диатомовые водоросли. Водоросли активно участвуют в процессах выветривания горных пород и минералов, например каолинита, разлагая этот минерал на свободные окислы кремния и алюминия. Будучи организмами, содержащими хлорофилл, они способны к фотосинтезу и поэтому обогащают почвенный слой некоторым количеством органического вещества.

Следует также отметить участие в почвообразовательном процессе лишайников - сложных симбиотических организмов, состоящих из гриба и водоросли. Лишайники способны произрастать непосредственно на камнях и скалах, поэтому они обычно являются пионерами растительной жизни на обнаженной поверхности горных пород. Большинство лишайников внедряется в толщу горных пород при помощи гиф гриба и вызывают активное разрушение всех горных пород, выходящих на дневную поверхность .


Количествово водорослей в некоторых почвах (в 1 г почвы)

ПочваЦианобактерииЗелёныеДиатомовыеВсегоПодзолистые0-2,03,0-25,02,0-7,55,0-30,0Дерново-подзолистые2,0-24,010,0-128,010,0-76,012,0-220,0Чернозёмы5,0-50,010,0-85,08,0-35,025,0-120,0Тёмно-каштановые660,0-2000,06,0-35,086,0-116,0800,0-2160,0Бурые сухостепные43,037,015,096,0

4.4 Грибная микрофлора в почвах


Наряду с бактериями большое участие в почвообразовательных процессах принимают грибы. Грибная микрофлора в почвах очень разнообразна и представлена большим количеством видов.

Многие виды грибов способны образовывать на корнях зеленых растений микоризу (греч. mykes - гриб, rhiza - корень), обусловливая особый микотрофный (греч. mykes - гриб, trophe - пища) тип корневого питания растений. Микоризой называется сожительство многих растений с особыми почвенными грибами, получившими название микоризных. Наиболее широко распространены микоризные грибы среди древесных растений. Для каждого вида растений характерен особый вид гриба.

Вся грибная микрофлора очень требовательна к кислороду, поэтому наиболее богаты грибами поверхностные слои почвы. С жизнедеятельностью грибов в почве связаны процессы разложения клетчатки, жиров, лигнина, белков и других органических соединений.

В разложении органических веществ значительную роль играют также актиномицеты. Актиномицеты или лучистые грибы, представляют собой переходную форму между бактериями и грибами.

Колонии актиномицетов часто пигментированы и окрашены в розовые, красные, зеленоватые, бурые и черные цвета. Все актиномицеты относятся к типичным аэробам и лучше всего развиваются при свободном доступе воздуха. Они активно разлагают без азотистые и азотистые органические вещества, в том числе и наиболее стойкие соединения, входящие в состав гумуса .


4.5 Роль животных в почвообразовании


Животные почвы участвуют в преобразовании органического вещества (рисунок 20). Этот процесс происходит в системе пищевых связей, в системе продуценты - консументы (I-IIпорядков) - редуценты .

Из почвенных животных необходимо отметить дождевых червей. Они широко распространены в природе и входят в состав биоценозов разных природных зон. На территории Росси и сопредельных стран отмечено более 80 видов этих животных. На некислых луговых и лесных почвах их содержится до 1 млн. особей на 1 га, и они могут составлять до 90% и более почвенной зоомассы. Для них благоприятны достаточно влажные почвы, но без застоя воды, засоления и повышенной кислотности, поэтому много дождевых червей в почвах широколиственных лесов (до 500 на 1 мІ) и луговых степей (свыше 100 на 1 мІ). Здесь они в период от 30 до 200 лет полностью перерабатывают 20-сантиметровый слой почвы. На одного червя в год приходится до 400 г. заглатываемой смеси органических остатков и минеральных частиц. Они не только перерабатывают опад, но и оказывают существенное прямое и косвенное влияние на все почвенные компоненты. Пронизывая почву ходами, улучшая её аэрацию, водопроницаемость и влагоёмкость, дождевые черви создают благоприятные условия для развития и растений, и разных почвенных организмов, участвующих в разложении органического вещества. Питаясь отмершими органами растений и экскрементами животных, дождевые черви заглатывают также много бактерий, грибов, простейших и нематод. Участвуя в разложении экскрементов скота на пастбищах, они частично переносят их в глубь почвы, обогащая эти слои. Стенки их ходов пропитываются выделениями червей, содержащими аммиак и мочевину; так что общее количество поступившего в почву азота колеблется от 18 до 150 кг/га. А выделяемые дождевыми червями капролиты представляют достаточно влагостойкие агрегаты, способствующие созданию комковатой структуры почвы. Всё это улучшает условия жизни растений, что неоднократно было доказано многими опытами .

В аридных регионах проявляется деятельность муравьев и термитов. Ежегодно термиты выносят до 109 ц/га почвенной массы на поверхность. Роющие животные способствуют перемешиванию почвы и созданию благоприятного водно-воздушного режима. Большое и разн о образное влияние оказывают на почву роющие (сурки, суслики, кроты, полевки). Они изменяют микрорельеф, увеличивают площадь соприкосновения почвы с воздухом, способствуют проникновению в нее осадков, улучшают условия минерализации органики. Все это благоприятно сказывается на растениях, перерывая почву, землерои выносят из глубины на поверхность отличающийся по свойствам субстрат .


Рисунок 20 - Почвенные организмы


5. Значение эдафических факторов в распределении животных и растений


Специфические растительные ассоциации формируются в связи с разнообразием условий мест обитаний, Включая и почвенные, а также в связи с избирательностью по отношению к ним растений в определённой ландшафтно-географической зоне. Следует учитывать, что даже в одной зоне в зависимости от её рельефа, уровня грунтовых вод, экспозиции склона и ряда других факторов создаются неодинаковые почвенные условия, которые отражаются на типе растительности. Так, в ковыльно-типчаковой степи всегда можно обнаружить участки, где доминирует ковыль или, наоборот, типчак. Именно поэтому типы почв являются мощным фактором распределения растений.

На наземных животных эдафические факторы оказывают меньшее влияние. Вместе с тем животные тесно связаны с растительностью, и она играет решающую роль в их распределении. Однако и среди крупных позвоночных легко обнаружить формы, которые приспособлены к конкретным почвам. Это особенно характерно для фауны глинистых почв с твёрдой поверхностью, сыпучих песков, заболоченных почв и торфяников. В тесной связи с почвенными условиями находятся роющие формы животных. Одни из них приспособлены к более плотным почвам, другие могут разрывать только легкие песчаные почвы. Типичные почвенные животные также приспособлены к различным видам почв. Например, в средней Европе отмечено до 20 жуков, которые распространены только на солончаковатых или солонцовых почвах. И в то же время нередко почвенные животные имеют очень широкие ареалы и встречаются в разных почвах. Дождевой червь достигает высокой численности в тундровых и таёжных почвах, в почвах смешанных лесов и лугов и даже в горах. Это связано с тем, что в распространении почвенных обитателей кроме свойств почвы большое значение имеют их эволюционный уровень и размеры тела. Тенденции к космополитизму отчётливо выражена у мелких форм: бактерий, грибов, простейших, микроартопод (клещей), почвенных нематод.

По целому ряду экологических особенностей почва является средой, промежуточной между наземной и водной. С воздушной средой почву сближает наличие почвенного воздуха, угроза иссушения в верхних горизонтах, довольно резкие изменения температурного режима поверхностных слоёв.

С водной средой почву сближает её температурный режим, пониженное содержание кислорода в почвенном воздухе, насыщенность его водяными парами и наличие воды в других формах, присутствие в почвенных растворах солей и органических веществ, возможность двигаться в трёх измерениях. Как и в воде, в почве сильно развиты химические взаимозависимости и взаимовлияние организмов.

Промежуточные экологические свойства почвы как среды обитания животных дают возможность сделать заключение, что почва играла особую роль в эволюции животного мира. Например, для многих групп членистоногих в процессе исторического развития почва явилась средой, через которую типично водные организмы смогли перейти к наземному образу жизни и заселить сушу .


Заключение


Почва - стабильная среда обитания, в которой температурный режим и увлажнение всегда изменяются плавно. Почва насыщенна организмами, количество которых огромно, что обусловлено физико-химическими свойствами, механическим составом. Растения, животные, микроорганизмы, обитающие в почве, находятся в постоянном взаимодействии друг с другом и со средой обитания. Поэтому, для организмов достаточно незначительного перемещения чтобы найти благоприятные условия обитания. Сложность почвенной среды создает большое разнообразие условий для самых разных организмов. Почва насыщена различными питательными веществами, которые необходимы для развития растений и животных. Она является незаменимым связующим звеном между наземной и водной средой. Биологическая взаимосвязь между почвой и человеком осуществляется главным образом путем обмена веществ. Почва является как бы поставщиком минеральных веществ, необходимых для цикла обмена веществ, для роста растений, потребляемых человеком и травоядными животными, съедаемыми в свою очередь человеком и плотоядными животными. Таким образом, почва обеспечивает пищей многих представителей растительного и животного мира.

Главная функция почвы - это обеспечение жизни на Земле. Это определяется тем, что именно в почве концентрируются необходимые организмам биогенные элементы в доступных им формам химических соединений. Кроме того, почва обладает способностью аккумулировать необходимые для жизнедеятельности продуцентов биогеоценозов запасов воды, также в доступной им форме, равномерно обеспечивая их водой в течение всего периода вегетации. Наконец, почва служит оптимальной средой для укоренения наземных растений, обитания наземных беспозвоночных и позвоночных животных, разнообразных микроорганизмов.

Список использованных источников


1 Эдафические факторы и их роль в жизни растений и почвенной биоты [Электронный ресурс]. Режим доступа: http://yandex.by.ru. Дата доступа - 08.02.2013

Шамилева, И.А. Экология / И.А. Шамилева. - М., 2004. - 144 с.

Рассашко, И.Ф. Общая экология: тексты лекций / И.Ф. Рассашко, О.В. Ковалева, А.В. Крук. - Гомель, 2010. - 252 с.

Степановских, А.С. Общая экология / А.С. Степановских. - М.: ЮНИТИ-ДАНА, 2002. - 510 с.

Коробкин, В.И. Экология / В.И. Коробкин, Л.В. Передельский. - Ростов-н/Д.: Феникс, 2010. - 602 с.

Эдафические факторы и их роль в жизни растений и почвенной биоты [Электронный ресурс]. Режим доступа: http://ychebalegko.ru. Дата доступа - 08.02.2013

Эдафические факторы и их роль в жизни растений и почвенной биоты [Электронный ресурс]. Режим доступа: http://ecology-online.ru . Дата доступа - 08.02.2013

Эдафические факторы и их роль в жизни растений и почвенной биоты

Степановских, А.С. Экология: учебник для вузов / А.С. Степановских. - М.: ЮНИТИ-ДАНА, 2001. - 703 с.

Эдафические факторы и их роль в жизни растений и почвенной биоты [Электронный ресурс]. Режим доступа: http://greenfuture.ru. Дата доступа - 08.02.2013

Эдафические факторы и их роль в жизни растений и почвенной биоты [Электронный ресурс]. Режим доступа: http://botcad.ru. Дата доступа - 08.02.2013

Мешечко, Е.Н. Физическая география / Е.Н. Мешечко, В.П. Шпетный; под ред. Е.Н. Мешечко. - Минск, 2012. - 416 с.

Почвоведение с основами геологии: учебное пособие / под ред. А.И. Горбылева. - Минск, 2002. - 106 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Введение

1. Состояние изучаемого вопроса 11

2. Условия почвообразования на территории южной части Западной Сибири 38

2.1. Почвообразующие и подстилающие породы 38

2.2. Подзона подтайги 41

2.3. Подзона северной лесостепи 48

2.4. Растительность как фактор почвообразования 56

2.5. Методика исследований и схемы опытов 61

3. Населениие микроартропод агроландшафтов подтайги и северной лесостепи 70

3.1.Видовой состав панцирных клещей естественных биоценозов агроландшафтов 70

3.2.Население микроартропод агроценозов подзоны северной лесостепи 87

3.3. Сезонная динамика численности микроартропод агроценозов подзоны северной лесостепи 95

3.4. Структура населения микроартропод агроценозов подзоны подтайги 113

4. Биология доминирующих видов панцирных клещей агроценозов подтайги и северной лесостепи 132

4.1. Биология панцирного клеща Oppiella nova (Oudemans) 133

4.2. Биология панцирного клеща Tectocepheus velatus Mich 140

4.3. Биология панцирного клеща Scheloribates laevigatus (C.L.Koch.).. 148

4.4. Особенности питания Oppiella nova (Oudemans), Tectocepheus velatus Mich, и Scheloribates laevigatus (C.L.Koch.) 155

5. Биологические показатели в обеспечении формирования плодородия почвы 174

5.1. Влияние структуры населения и динамики численности микроартропод на разложение органических удобрений 182

5.2. Производство биогумуса и влияние его на структуру населения микроартропод 257

6. Влияние основных элементов системы земледелия на почвенных микроартропод и улучшение агрофизических показателей плодородия почв 294

Выводы 354

Литература 361

Приложение 407

Введение к работе

В эколого-экономической системе сельского хозяйства важнейшим компонентом является земля. Её качество, возможность повышения ее продуктивности и воспроизводство естественного плодородия прямо или косвенно влияют на развитие всей отрасли в целом.

Почвы представляют особую сложную биогенную оболочку земного шара, покрывающую сушу материков, это саморегулирующаяся система, включающая минеральные вещества, органику и многочисленных живых обитателей от микроорганизмов до червей и насекомых.

Истощение почв и насыщение их техногенными и антропогенными загрязнителями приводит к тому, что плодородный почвенный слой теряет один за другим те компоненты, которые и делают его уникальной системой, обеспечивающей сложные процессы минерализации и деминерализации веществ, преобразования энергии, самоочищения и самовоспроизведения. Дегумификация отчетливо проявилась в районах, где имеют место нарушения севооборотов, невыполнение технологий возделывания культур, необоснованная техногенная нагрузка на почву и несоблюдение закона возврата элементов питания в почву (Абрамов, 1995, 2003; Кирюшин, 2000). В земледелии сложился устойчивый отрицательный баланс питательных веществ, что стало одной из ведущих причин резкого снижения продуктивности пашни. Для решения этой проблемы необходима эффективная система организационных и агрономических мер, в том числе мер, позволяющих оптимизировать питание растений за счет повышения плодородия почв.

Установлено, что для поддержания оптимального уровня плодородия почв в России необходимо ежегодно вносить на поля не менее \6 млн. т д. в. минеральных и до 1 млрд. т органических удобрений (Милащенко, 1999).

Естественно-агрономическое обоснование воспроизводства плодородия почв базируется на экспериментально установленных и теоретически полностью объясненных положениях первичности и незаменимости плодородия в создании урожая, его материальности, энергетическом и экологическом значении. Концентрированным выражением сущности и значения плодородия почвы в земледелии является концепция единства растения и почвы, а также закон возврата - частное проявление всеобщего закона сохранения вещества и энергии.

Теоретической основой диагностики плодородия почв и разработки систем управления им является представление о плодородии как о сложной кибернетической системе, характеризующейся следующими признаками: многомерностью, большим числом взаимосвязанных параметров ключающих как количественные, так и качественные характеристики, различной природой параметров (физической, физико-химической, биологической и т.д.), их изменчивостью во времени и в пространстве, обусловленной как саморазвитием, так и управляющим воздействием геосистем, частью которых они являются (Апарин, 1979,1997).

Важным элементом в системе земледелия Западной Сибири является обработка почвы. Общепринятой системой основной обработки почвы для северной лесостепи и подтайги - отвальная, которая способствует минерализации органического вещества и без дополнительных мер восстановления плодородия почв не обеспечивает воспроизводство гумуса, особенно в последнее время, когда применение удобрений практически прекратилось. Контроль за состоянием плодородия почвы ухудшился.

Задача повышения и поддержания почвенного плодородия является одной из самых насущных задач практической деятельности человека и одной из самых сложных проблем, стоящих перед наукой.

Современные представления о почве основываются на положениях В. В. Докучаева и П.А. Костычева об исключительной роли живых организмов в образовании и жизни почвы.

Плодородие большинства почв зависит преимущественно от динамики живого и мертвого органического вещества, играющего решающую роль в процессах почвообразования, в создании оптимальных физико-химических особенностей почвы, снабжении растений элементами минерального питания и биологически активными веществами. Масштабы абиотических процессов в почве несоизмеримо малы по сравнению с процессами, определяемыми жизнедеятельностью высших растений, микроорганизмов и животных (Кононова, 1963; Тюрин, Кононова, 1963).

До недавнего времени в круговоротах веществ в биогеоценозах суши учитывали участие автотрофных и гетеротрофных организмов, куда включали преимущественно микроорганизмы, минерализующие растительные остатки и пополняющие запасы элементов минерального питания в почве. Роль животных рассматривали как консументов - потребителей органического вещества, создаваемого растениями. Исследованиями МС.Гилярова показано, что деление гетеротрофных организмов на консументов и редуцентов весьма условно, а деятельность беспозвоночных гораздо более значительна, чем считали ранее (Курчева, 1965, 1971).

Почвенные сапрофаги ускоряют микробиологический распад, размельчая растительные остатки и увеличивая их суммарную поверхность, доступную воздействию микрофлоры, расселению которой они способствуют. Сапрофаги перемешивают органическую часть почвы с минеральной, пропуская эту смесь через свои кишечники и участвуют таким образом в создании зернистой структуры почвы. При активном передвижении беспозвоночных улучшаются дренирование и аэрация глубоких горизонтов почвы, интенсифицируются в них микробиологические процессы. Такая деятельность почвенных беспозвоночных свидетельствует о том, что это один из мощных факторов круговорота веществ и почвообразовательных процессов (Гиляров,1971,Гиляров, Стриганова, 1978, Курчева, 1971).

В почве обитает огромное число беспозвоночных животных: простейшие, коловратки, тихоходки, нематоды, энхитреиды, дождевые черви, моллюски, мокрицы, многоножки, клещи и насекомые. Они составляют 25 -30% от общей биомассы организмов, населяющих почву; остальные 70 - 75% приходятся на долю бактерий, актиномицетов и грибов (Dunger, 1964). Живая масса почвенных беспозвоночных достигает 3,5 т/га (Edwards, 1966).

Большинство микроартропод селятся в основном в верхнем слое почвы глубиной до 30 см независимо от особенностей её хозяйственного использования.

Неосмотрительное антропогенное вмешательство может нарушить равновесие в агробиоценозе и привести к тяжелым последствиям, в частности к падению плодородия почвы. В связи с напряженной антропогенной нагрузкой особое значение приобретает оценка влияния окультуривания почвы на педофауну. Знание различных аспектов биологии почвенных микроартропод является необходимым при подготовке научных основ прогнозирования процессов, происходящих в агробиоценозах, с целью их оптимизации и охраны почв.

Цель исследований:

Изучение комплексов микроартропод агроландшафтов юга Западной Сибири и изыскание путей их формирования с целью повышения плодородия почвы и оптимизации сельскохозяйственной практики.

Задачи исследований:

Провести сравнительный эколого-фаунистический анализ видового состава панцирных клещей естественных биогеоценозов агроландшафтов Западной Сибири;

Изучить видовое разнообразие панцирных клещей и сезонную динамику численности микроартропод агробиоценозов на черноземных и серых лесных почвах агроландшафтов Западной Сибири;

Изучить биологию доминирующих видов панцирных клещей и биоценотические отношения между клещами и микрофлорой агробиоценозов;

Выявить закономерности формирования фаунистических комплексов микроартропод в агробиоценозах под влиянием агротехнологических мероприятий на чернозёме выщелоченном и серых лесных почвах;

Изучить специфику формирования структуры фаунистических комплексов микроартропод под влиянием агрофизических свойств почвы;

Выявить основные закономерности влияния структуры населения и динамики численности микроартропод на разложение органических удобрений и формирование плодородия почвы.

Научная новизна.

Впервые дана комплексная характеристика и сравнительный анализ населения панцирных клещей естественных и аграрных экосистем агроландшафтов Западной Сибири, а также выявлены особенности влияния хозяйственной деятельности человека на структуру фаунистических комплексов микроартропод.

Детально исследована динамика численности видового состава орибатид в колках и севооборотах на черноземах выщелоченных и серых лесных почвах Западной Сибири. Установлена роль колков и предшественников севооборота в формировании видового разнообразия агробиоценозов.

Изучена биология развития доминирующих видов орибатид агробиоценозов, влияние на них спектра температур, определены нижние пороги развития и суммы эффективных температур для определения числа генераций в течение вегетационного периода. Определены основные спектры питания доминирующих видов О. nova, Т. velatus, Sch. laevigatas.

Выявлено, что в условиях интенсивного сельскохозяйственного производства положительное влияние на динамику микроартропод оказывает дифференцированная, безотвальная и поверхностная обработки почвы. Установлены закономерности влияния плотности почвы и запасы продуктивной влаги на численность микроартропод.

Установлено активное участие микроартропод в процессе разложения растительных остатков сельскохозяйственных культур и определено влияние органических удобрений на формирование и структуру фаунистических комплексов, которые распределяются в зависимости от стадии разложения органических веществ. Динамические процессы в сообществе микроартропод подтверждаются теоретическим обоснованием использования в качестве органических удобрений комплексного применения соломы и сидератов в севообороте.

Теоретическая и практическая значимость. Результаты исследований служат вкладом в понимание путей и специфики формирования почвенной биоты агроландшафтов на юге Западной Сибири, теоретической основой для обоснования и разработки качественных и количественных показателей использования органических удобрений, систем обработки почвы, севооборотов.

Новые данные, полученные в результате исследований, вошли в курсы лекций по зоологии беспозвоночных, акарологии, сельскохозяйственной энтомологии, почвенной зоологии и экологии почв, читаемых в Тюменской государственной сельскохозяйственной академии и на биологическом факультете Тюменского госуниверситета.

Основное положение, выносимое на защиту.

Количественные и качественные параметры почвенной биоты являются отражением формирования почвенного плодородия в агроландшафтах юга Западной Сибири.

Апробация работы. Материалы диссертационной работы обсуждались и докладывались на Всесоюзных и Всероссийских совещаниях по почвенной зоологии (1987 - 2002), на съездах русского энтомологического общества (1998, 2002), на научных конференциях Тюменской сельхозакадемии (1997, 1999, 2000, 2001, 2002), Курганской сельхозакадемии (1994) и на Всероссийской научно-практической конференции (Курган, 1998), (Тюмень, 1999), на научно-технической конференции (Челябинск, 2002), на Региональной научно-практической конференции (Томск, 2003), на Международной научно-практической конференции по органическим удобрениям (Владимир, 2003), на Международном симпозиуме «Экология и биоиндикация панцирных клещей» (Германия, 1995).

Структура и объем работы. Диссертация изложена на 424 страницах машинописного текста и состоит из введения, 6 глав, выводов, списка литературы и приложения. Экспериментальный материал приведен в 86 таблицах и 141 рисунке. Библиографический список состоит из 529 наименований, в том числе 96 иностранных.

Пользуясь случаем выразить свою искреннюю признательность коллективу кафедры почвоведения и агрохимии, где выполнялась данная работа. Выражаю сердечную благодарность за консультации доктору с-х. наук, профессору ТюмГСХА Н.В.Абрамову и доктору с-х. наук, профессору ТюмГСХА В.А.Федоткину. В трудоемких полевых работах автору помогали студенты Тюменской государственной сельскохозяйственной академии и Тюменского государственного университета, которые выполняли курсовые и дипломные работы. Глубокая благодарность моему первому учителю канд. биол. наук, доц. ТГУ [Л.Д.Голосовой за постоянную поддержку и консультации. Также автор благодарен и признателен доктору биол. наук, профессору ЛГУ В.Н.Белозерову, канд. биол. наук, доц. ЛГУ (Н.И.Горышину, канд. биол. наук, сне ИСиЭЖ РАН Л.Г.Гришиной, канд. биол. наук, сне ИПЭЭ РАН А.Я.Друку, канд. биол. наук, доц. ТюмГСХА С.И.Зарубину, доктору биол. наук, профессору ТюмГСХА уІ.Н.Каретинуі доктору биол. наук, профессору ТюмГСХА И.Д. Комисарову, доктору биол. наук, профессору МГУ, чл.-корр. ИПЭЭ РАН Д.А.Криволуцкому, канд. биол. наук, зав. лаб. БИНИИИ ЛГУ Л.И.Пшедецкой, канд. с.-х.. наук, доценту ТюмГСХА Е.П.Реневу, канд. биол. наук, доц. ТГУ А.В.Толстикову, доктору биол. наук, профессору ЛГУ [В.П.Тыщенко!, канд. биол. наук, доц. ГГПИ М.П.Чистякову, доктору биол. наук, профессору ГГПИ Е.С.Шалдыбиной за консультации по почвоведению,земледелию, фитоценологии, акарологии, микологии, за предоставленную возможность работать с обширной акарологической литературой и справочными коллекциями по орибатидам.

Условия почвообразования на территории южной части Западной Сибири

Современный литологический состав рыхлых поверхностных пород и развитие гидрографической сети на территории Западной Сибири в значительной мере определены геологическим прошлым. Западно-Сибирская низменность примерно до мезозоя существовала как складчатая страна. В мезозое территория Западной Сибири подверглась тектонической депрессии и в результате деятельности дислокационных процессов образовалась Западно-Сибирская низменность. Наступившее с севера мезозойское море заполнило образовавшуюся депрессию и вместе со следовавшим за ним палеогеновым морем сильно пенепленизировало поверхность. В эоцене море имело максимальную глубину, к концу этого периода - началу олигоцена стало мелеть. В неогене море отделилось от Северного океана и образовало замкнутый бассейн, который затем распался на ряд крупных озер, исчезнувших к концу этого времени. Таким образом, Западно-Сибирская плита имеет палеозойское основание покрытое чехлом мезозойских и кайнозойских отложений (Геология СССР, 1969).

Древние морские отложения представлены темно-серыми, серыми и светло-коричневыми аргелитами, опоковыми глинами, опоками и песчаниками. Они отлагались в эоцене, когда море имело максимальную глубину.

Эоценовое море и сменившие его в палеогене озерные бассейны заполнили западносибирскую депрессию мощным слоем рыхлых осадочных отложений, которые сохранились на поверхности до настоящего времени (Геология СССР, 1969) и оказали большое влияние на формирование почвенного покрова. Они представлены преимущественно сизовато-серыми глинами монтмориллонитовой группы, так как содержат более 2% щелочей, 3% щелочноземельных металлов и 7% железа.

Осадки неогеновой системы представлены зеленовато-серыми, грязно-зелеными или плотными не слоистыми голубовато-зелеными глинами аральской свиты (нижний-средний миоцен), которые содержат желваки, друзы, кристаллы, реже пластины гипса, и глинами жиландийской свиты с известными включениями в виде журавчиков. Осадки этой свиты, по всей видимости, образовались в засоленных озерах и с ними нередко связаны солончаково-солонцовые почвы.

В конце плиоцена формировалась гидрографическая сеть с хорошо разработанными долинами. Палеогеновые и неогеновые отложения подвергались интенсивному размыванию, в процессе которого формировалась четвертичная система.

Формирование современных форм рельефа и почвообразующих пород связано с перемещением базиса эрозии в период оледенений, с разрывом древнеаллювиальных отложений и активными делювиальными процессами во влажный послеледниковый период. Согласно геологическим исследованиям в третичное время на территории Западно-Сибирской низменности был субтропический климат, который к концу плиоцена сменился более суровым, а в начале четвертичного времени ледниковым периодом. К концу ледникового периода северная часть Западно-Сибирской низменности опускалась. В это время определилось направление рек Западной Сибири. После таяния ледника воды устремились в понижения, благодаря чему произошло размывание более высоких частей рельефа, образование грив и формирование современной гидрографической сети. Послеледниковое время характеризуется жарким и сухим климатом, при котором, как считают геологи, возможно образование лёссов. И, наконец, климат стал постепенно изменятся в сторону того, какой мы имеем в настоящее время (Архипов, Вдовин и др., 1970).

Окончательное формирование рельефа и поверхностных отложений произошло в четвертичную эпоху, которая характеризуется пятью ледниковыми периодами и четырьмя послеледниковыми.

Наиболее существенное влияние на формирование рельефа и поверхностных отложений юга области сыграло самаровское оледенение в среднечетвертичную эпоху. Это был период максимального оледенения, когда ледник продвинулся примерно до широты Сургута. Перед ледником сформировался огромный водный бассейн типа мелкоморья. На юге области воды поднимались до 80 - 100 м над ур.м., сбрасывались они по Тургайской впадине в Каспийское море. На территории покрытой приледниковым озером, шло осадконакопление (озерных, озерно-аллювиальных). На приподнятых местах юга области располагались водораздельные равнины, сложенные лёссовидными породами субазрального генезиса (Архипов, Вдовин и др., 1970).

В последующий период наступление ледников было менее значительным, как и трансгрессия моря. На равнинах юга области образовались террасы, окончательно формировались покровные отложения, которые и являются почвообразующими породами. Они представлены в основном четвертичными отложениями различных возрастов. Это аллювиальные, озерные и озерно-аллювиальными, а также субаэральные покровные отложения (Гаджиев, Овчинников, 1977). Четвертичные отложения низких террас озерно-аллювиального генезиса разных возрастов занимают зону южной тайги и частично подтайги. В лесостепной зоне они представлены современными аллювиальными отложениями различного гранулометрического и вещественного состава (Волкова, 1966, Архипов, 1971). Особого внимания заслуживают покровные отложения высоких террас подтайги и лесостепи, поскольку специфика почвенного покрова и почв области в значительной степени связана именно с этими породами. Эти отложения имеют озерное или озерно-аллювиальное происхождение, но занимают террасы с высотными отметками. В основном формирование пород до зарождения современного почвенного покрова проходило в аридных и субаридных условиях (Волков и др., 1969), что привело их к облёссовыванию. Вследствие этого появились карбонаты, легкорастворимые соли, увеличилось количество фракций пыли, особенно крупной.

Сезонная динамика численности микроартропод агроценозов подзоны северной лесостепи

В настоящее время установлено, что кривая динамики численности некоторых групп микроартропод за вегетационный период чаще всего имеет двувершинныи вид, с двумя пиками максимальной численности. Первый пик отмечается в начале вегетационного периода (май-июнь), второй - осенью (сентябрь-октябрь). Летом и зимой численность снижается. Такой тип сезонных изменений численности орибатид и коллембол обнаружен в естественных и сельскохозяйственных ценозах во многих областях европейской части России (Ситникова, 1961, Субботина, 1969, Чугунова, 1970, Чистяков, 1971 и др.), в Приморском крае (Голосова, 1970, 1975), о.Сахалин (Лящев, 1984, 1989) и других регионах. Большинство авторов связывает колебания численности микроартропод с изменениями экологических условий в течение года (Шалдыбина, 1957; Москачева, 1959; Гришина, 1968; Субботина, 1969, Чистяков, 1971, Голосова, 1975, и др.). В некоторых работах (Субботина, 1965, Гришина, 1970, Чугунова, 1970 и др.) сезонная динамика численности орибатид объясняется кроме того особенностями жизненных циклов орибатид. В.Б.Пивень (1972, 1973 г, 1973д) для агроценозов лесостепной зоны Новосибирского Приобъя установил, что сезонные колебания численности панцирных клещей на культурных землях имеют один ярко выраженный максимум в сентябре. Такой характер сезонной динамики он связывает с возделываемыми культурами, микростациальными условиями и изменением численности доминирующих видов.

В настоящей работе нами исследована динамика численности орибатид в зернопропашном севообороте на выщелоченных черноземах. При этом преследовалась основная цель наших исследований: выяснить общий характер динамики численности микроартропод в агроценозах и влияния обработок на характер изменения численности микроартропод в течение сезона под отдельными культурами.

Анализируя сезонную динамику микроартропод в зернопропашном севообороте (однолетние травы - пшеница - ячмень - кукуруза - пшеница -ячмень) на выщелоченном черноземе, было отмечено, что характер динамики численности различных групп микроартропод под культурами может очень сильно отличаться друг от друга. Следует заметить, что это в какой-то степени зависит от соотношения численности между группами, приема обработок почвы и сельскохозяйственной культуры.

Микроартроподы были представлены пятью группами: орибатидами с преимагинальными стадиями, акаридиевыми, тромбидиформными, мезостигматическими клещами и коллемболами.

Рассматривая сезонную динамику численности микроартропод под однолетними травами при отвальной обработке почвы, было отмечено, что численность их колеблется в течение сезона в пределах от 7900 до 14800 экз/м. Так, у взрослых орибатид мы наблюдаем ход динамики, который идет следующим образом. Весной (в мае) было отмечено 2453 экз/м2. После предпосевных обработок численность орибатид в июне начинает уменьшаться (2133 экз/м), а к июлю она падает до 1960 экз/м. В конце июля и августе после уборочных работ и зяблевой вспашки численность продолжает убывать (1473 экз/м), но в августе и сентябре идет постепенная стабилизация (1427 экз/м). Динамика численности преимагинальных стадий почти не отличается от динамики имаго орибатид, единственное, что в июне их численность немного повышается (2707 экз/м), а затем идет постепенно на убыль. Следует отметить, что численность преимагинальных стадий постоянно превышает имаго орибатид на 17 - 46% в течение сезона (приложение 2).

При рассмотрении других групп микроартропод было установлено, что акароидные, тромбидиформные, мезостигматические клещи и коллемболы отличаются сезонной динамикой численности от панцирных клещей тем, что у акароидных клещей численность в мае была в 3,4 раза ниже (720 экз/м), чем у орибатид (2453), а к середине июня увеличилась в 3,8 раза (2733) и к середине июля она еще увеличилась в 2 раза (5680). В августе и сентябре ход численности их меняется, кривая идет на понижение и к сентябрю падает в 3,6 раза. У тромбидиформных и мезостигматических клещей интенсивность подъема роста численности ниже, чем у акароидных. Так, численность тромбидиформных клещей с мая по середину июня увеличилась на 48%, с июня по середину июля она увеличивается на 82%, а в августе и сентябре происходят только не большие колебания численности в пределах 16 - 28%. Пик численности мезостигматических клещей отмечен к концу июля (1013 экз/м), но затем она вновь падает и в сентябре составляет 573 экз/м2. Ход численности коллембол в начале сезона колеблется равномерно и только во второй половине сезона начинает падать (640 экз/м) (рис. З.З.1., приложение 2).

Структура населения микроартропод агроценозов подзоны подтайги

Животный мир пахотных почв сильно трансформирован деятельностью человека. Мелкие почвенные членистоногие (микроартроподы) - одна из немногих групп животных - почвообразователен, сохраняющих в агроценозах достаточно высокую численность и видовое разнообразие. Их функциональная роль в почве, по исследованиям последних лет, заключается нестолько в непосредственной переработке органических веществ, сколько в регуляции микробиологической активности в связи с положением микроартропод в деструкционных трофических цепях (Стриганова, 1980). В связи с этим закономерности и особенности распределения различных групп мелких членистоногих в пахотной почве представляют интерес не только с зоологической точки зрения, но и для характеристики почвообразовательного процесса.

Материал собран на опытном поле стационара Тюменской государственной сельскохозяйственной академии в Юргинском районе Тюменской области. Почва опытного поля средне и слабогумусная, серая лесная. Неоднородность почвенных свойств определяется в основном естественным варьированием. Исследовали верхний слой пахотного горизонта до 15 см в полях зернового с занятым паром севооборота под культурами: однолетние травы, пшеница и овес. Рассматривали общие особенности варьирования плотности популяций в пахотном слое.

В результате проведенных исследований на полях зернового с занятым паром севооборота на серых лесных почвах нами было выявлено 32 вида панцирных клещей (табл.3.4.1.), из них под однолетними травами - 28 видов, под пшеницей - 24 вида и под овсом - 18 видов.

При изучении агроценозов с различными культурами нами было отмечено, что плотность панцирных клещей может колебаться в течение сезона в очень больших пределах. Так, например, под однолетними травами -от 1440 до 2880 экз/м, под пшеницей - от 1380 до 2530 экз/м, под овсом - от 1240 до 2220 экз/м2. Следует отметить, что численность орибатид здесь примерно в 2,1 - 4,3 раза ниже, чем в смешанных лесах агроландшафтов Западной Сибири. Фауна панцирных клещей представлена широко распространенными в Голарктике видами, среди которых большого разнообразия достигают виды верхнепочвенные, глубокопочвенные и неспециализированные.

По приуроченности к определенным культурам обнаруженные виды панцирных клещей отнесены к нескольким группам (табл.3.4.1.) 1. Виды, населяющие все обследованные поля (11 видов). Это следующие представители фауны агроценозов зернового севооборота: Epilohmannia cilindrica, Banksinoma lanciolata, Tectocepheus velatus, Oppiella nova, Microppia minus, Tectoribates ornatus, Libstadia similes, Punctoribates punctum, Peloptulus phaenotus, Eulohmannia ribagai, Birsteinius perlongus. 2. Виды, встреченные на нескольких полях, предпочитающие некоторые культуры. К ним относятся Oppia cylindrica, Conchogneta tragardhi, Oribatula tibialis, Scheloribates latipes, Scheloribates laevigatus, Ceratozetes sellnicki, Punctoribates hexagonus, Oribatella angulosa, Scutovertes pannonicus, Tegoribates latirostris и Artopacarus striculus. 3. Виды, обнаруженные на нескольких полях с примерно одинаковым распределением в них (Eulohmannia ribagai, Epilohmannia cilindrica, Birsteinius perlongus, Punctoribates hexagonus, Scheloribates laevigatus, Oribatula tibialis, Conchogneta tragardhi). 4. Виды, встреченные только на одном поле (Brachychthonius berlesei, Quadroppia quadricarinata, Peloribates pilosus, Trichoribates incisellus, Rhysotritia duplicate. Исследования показали, что в зерновом с занятым паром севообороте на всех трех полях под однолетними травами, пшеницей и овсом были отмечены по одному эудоминанту, но следует отметить, что Tectocepheus velatus является таковым только под однолетними травами и овсом, a Oppiella nova - под пшеницей. По два доминирующих вида отмечено под однолетними травами (Oppiella nova и Microppia minus), под пшеницей ectocepheus velatus и Punctoribates punctum, а под овсом отмечен только один вид (Microppia minus). Субдоминирующие виды на этих полях не одни и те же. Так, под однолетними травами доминируют Palaeacarus kamenskii, Banksinoma lanceolata, Liebstadia similis и Peloptulus phaenotus, под пшеницей субдоминируют Microppia minus, Oppia cylindrica, Tectoribates ornatus и Scutovertes pannonicus, а под овсом субдоминирует только один вид - Oppiella nova.

Производство биогумуса и влияние его на структуру населения микроартропод

Для решения экологических проблем, связанных с биологической утилизацией локально накопленных органических отходов, а также для восстановления и повышения плодородия сельскохозяйственных угодий, требуется тщательное соблюдение экологических законов, знание функционирования агроценозов и рационального их использования в интересах человека (Минеев и др., 1993)

В условиях интенсификации земледелия одной из важнейших задач является повышение плодородия пахотных почв путем увеличения содержания в них гумуса. Остро стоит вопрос о возможных источниках обогащения почвы свежим органическим веществом. Промышленность и сельское хозяйство поставляют в окружающую среду огромное количество органических отходов, поэтому одной из острейших проблем современной науки является разработка способов их утилизации и переработки. Уже существует много технологий утилизации органических отходов, большинство из которых самими не являются безотходными. Серьезной альтернативой им может быть биоконверсия с помощью вермикультуры -безотходная технология, дающая возможность получать экологически чистое удобрение - биогумус (вермикомпост) и биологическую массу вермикультуры (Покровская, 1990а,б; Мельник, 1991а, 19916; Попов, 1993; Ганжара, Борисов, Флоринский, 1995;Попов, 1995).

Оптимизируя функционирование агроценозов, необходимо восполнять утраченные биоценотические звенья. Один из путей решения -это искусственное восстановление отдельных звеньев агроэкосистемы без полного воссоздания видового разнообразия почвенной биоты. Это возможно при вермикультивировании, когда недостающее звено, гумифицированный органический материал, образуется в искусственных условиях.

Биогумус способствует повышению урожайности сельскохозяйственных культур на 20-30%, улучшает качество сельскохозяйственной продукции. Он используется для реанимации и рекультивации почв, подвергшихся негативным антропогенным воздействиям, для снижения содержания в них тяжелых металлов и радионуклидов (Алексеев, 1987).

Выращенные на биогумусе плоды и овощи, свободные от нитратов и тяжелых металлов, обладают прекрасными вкусовыми качествами, а цветы -исключительно тонким и нежным ароматом (Викторов, 1991; Мельник, 1991а).

Переработка органических отходов происходит с помощью искусственно воссозданного природного комплекса гетеротрофных организмов, включающих дождевых червей (Eisenia foetida) и сопутствующих им представителей почвенной микробиоты и сообществ микроорганизмов. Вермикультивирование позволяет решать проблему восстановления и поддержания плодородия почв.

Почва - это живой организм, комплекс микро- и макрофауны в сочетании с элементами неживого минерального и органического вещества, находящегося в тесном взаимообменном процессе. В числе многих гумификаторов главная роль отводится дождевым червям, как массовым животным, мощным землероям и структурообразователям почвы (Картамышев, 1996).

Дождевые черви, поглощая вместе с почвой значительное количество растительного детрита, микробов, грибов, водорослей и т.д., уничтожают и переваривают их, выделяя одновременно с копролитами большое количество собственной кишечной микрофлоры, ферментов, витаминов, которые обладают антибиотическими свойствами и препятствуют развитию патогенной флоры, обеззараживая почву. В процессе переваривания растительных веществ в кишечнике червей формируются гумусовые вещества. Они отличаются по химическому составу от гумуса, образующегося в почве при участии только микрофлоры тем, что в кишечнике червей развиваются процессы полимеризации низкомолекулярных продуктов распада органических веществ и формируются молекулы гуминовых кислот, имеющих нейтральную реакцию. Они образуют комплексные соединения с минеральными компонентами почвы и долго сохраняются в почве в виде стабильных агрегатов. Деятельность червей замедляет вымывание из почвы подвижных соединений и предотвращает возможность водной и ветровой эрозии ее (Карпец, Мельник, 1991; Перель, 1985). В капролитах червей естественных популяций содержание гумуса 11-19%. Черви обладают способностью образования, мелиорирования и структурообразования почвы. Эта их деятельность не дублируется никакими другими животными и не может быть компенсирована никакими мелиоративными приемами. Установлено, что за летний период популяция из 100 червей на один квадратный метр прокладывает в почве на этой площади несколько километров ходов и 3 метра капролитов. Но в почве капролитов остается еще больше (Вахрушев, 1991; Мельник, 19916; Попов, 1993). Выявлено, что каждый червь пропускает через свой пищеварительный канал за сутки количество почвы, равное весу своего тела. По подсчетам некоторых авторов, количество почвы, пропускаемой через пищеварительный канал дождевых червей на 1 га за год (имеется в виду теплый период), составляет 50 т. (Ганжара, Борисов, Флоринский, 1995; Перель, 1985).

Почвенная биота. Почва - сложнейшая система, одним из основных функциональных компонентов которой являются населяющие ее живые организмы. От деятельности этих организмов зависят характер и интенсивность биологического круговорота веществ, масштабность и интенсивность фиксации основного биогенного элемента - атмосферного азота, способность почвы к самоочищению и пр. Многие ученые обращали внимание на преобладающую роль биохимических процессов в почве, связывали урожайность сельскохозяйственных культур с активным функционированием микроскопических почвенных существ.

Особое значение имеют взгляды на почвенную биоту В. Р. Вильямса, который связывал ее с формированием малого биологического круговорота веществ на Земле, с обогащением почвы азотом в результате фиксации атмосферного азота.В последнее время значение почвенной биоты существенно возросло, и не только в связи с незаменимой ролью ее в формировании почвенного плодородия. При техногенном загрязнении компонентов биосферы, в том числе и почв, почвенная биота выполняет еще одну важную функцию - детоксикации различных соединений, присутствующих в почве и влияющих на состояние окружающей среды и качество сельскохозяйственной продукции.Почвенный покров представляет собой самостоятельную земную оболочку - педосферу. Почва - продукт совместного воздействия климата, растительности, животных и микроорганизмов на поверхностные слои горных пород. В этой сложнейшей системе непрерывно происходят синтез и разрушение органического вещества, круговорот элементов зольного и азотного питания растений, детоксикация различных загрязняющих веществ, поступающих в почву, и т. д.Эти процессы осуществляются благодаря уникальному строению почвы, которое представляет собой систему взаимосвязанных твердой, жидкой, газообразной и живой составляющих. Например, воздушный режим почвы тесно связан с ее влажностью. Оптимальное сочетание этих факторов способствует лучшему развитию высших растений. Последние, продуцируя большую биомассу, поставляют больше пищевого и энергетического материала для населяющих почву живых организмов, что улучшает их жизнедеятельность и способствует обогащению почвы питательными веществами и биологически активными соединениями. Твердая фаза почвы, в которой в основном сосредоточены источники питательных и энергетических веществ - гумус, органо-минеральные коллоиды, катионы Са г +, Мg 2 на поверхности почвенных частиц, взаимосвязана с почвенно-биотическим комплексом (ПБК).Почвенные частицы, особенно коллоидная и илистая фракции, благодаря большой суммарной поверхности обладают поглотительной способностью. Эта способность имеет большое экологическое значение, так как позволяет почве сорбировать различные соединения, в том числе токсичные, и тем самым препятствовать поступлению токсикантов в пищевые цепи.

Состав ПБК . Принято считать, что верхний слой почвы в целом состоит из минеральной субстанции (93 %) и органического вещества (7 %). В свою очередь, органическое вещество включает мертвое органическое вещество (85 %), корни растений (1 %) и эдафон (5 %). В структуру эдафона входят бактерии и актиноми-цеты (40 %), грибы и водоросли (40 %), дождевые черви (12%), прочая микрофауна (5 %) и мезофауна (3 %).

Масса бактерий составляет примерно 10т/га; такую же массу имеют микроскопические грибы; масса простейших достигает порядка 370 кг/га и т. д. На 1 га пашни приходится 250 тыс. дождевых червей (50... 140 кг/га), на 1 га пастбища-500... 1575 тыс. (1150...1680 кг/га), на 1 га сенокосных угодий - 2...5,6 млн (более 2 т/га). Среди животных организмов биосферы обитатели почвы характеризуются наибольшей биомассой. Исходя из предположения, что в среднем биомасса почвенной фауны составляет 300 кг/га, на площади 80 млн км 2 почвенного покрова Земли (без пустынь) суммарная биомасса почвенных животных всего земного шара составляет 2.5 млрд тДеятельность почвенной фауны, или педофауны, состоит в разложении опада на комплексные органические производные (первоначальная функция дождевых червей); эти соединения затем переходят к бактериям, актиномицетам, почвенным грибам, высвобождающим из органических остатков исходные минеральные компоненты, которые опять ассимилируются продуцентами. От деятельности почвенной биоты зависит плодородие почвы, ее «здоровье», качество сельскохозяйственной продукции, состояние окружающей среды. Знание особенностей функционирования ПБК в различных экологических условиях принципиально важно для создания продуктивных и устойчивых агроэкосистем производства экологически безопасной сельскохозяйственной продукции и минимизации загрязнения биосферы.

Структурно-функциональная организация ПБК в различных экологических условиях. Почва - часть биосферы, где действуют различные экологические факторы; поэтому в природе существует множество почвенных типов и их разновидностей с различным проявлением биологических процессов. Например, южные почвы, сформированные в условиях оптимального сочетания экологических факторов (достаточные количества тепла, влаги, питания), отличаются более высокой биологической активностью. Северные почвы в условиях лимитирующего температурного фактора, промывного типа водного режима, особенностей почвообразующих пород и пр. характеризуются низкой биологической активностью и своеобразным ПБК. Другими словами, разные экосистемы функционируют при участии различных почвенных организмов, что обусловливает уровень почвенного плодородия и устойчивость экосистемы к неблагоприятным факторам среды. Так черноземные почвы характеризуются высокой урожайностью и высокой устойчивостью по отношению к токсикантам. Почвы северного ряда - подзолистые и дерново-подзолистые - обладают менее выраженным плодородием, а также низкой устойчивостью к антропогенному загрязнению. В зависимости от типа почвы и ее культурного состояния эти различия проявляются в значительных колебаниях численности и структуры почвенной биоты вообще и микроорганизмов в частности. Наибольшее количество почвенных микроорганизмов содержится в черноземах и отдельных подтипах каштановых почв. Высокой численностью микроорганизмов характеризуются также сероземные почвы (приорошении). К северу и югу региона распространения этих почв численность микробного населения сокращается. Микробиота активно функционирует в основном в верхнем гумусовом слое, где сосредоточен наибольший запас питательных элементов, т. с. плодородие почв и почвенная биота взаимосвязаны.

Структурные изменения в функционировании экосистем в различных почвенно-экологических условиях определяются участием различных групп почвенного бионаселения в биохимических процессах. Например, в северных экосистемах в биологическом круговороте активное участие принимает грибное население; к югу в структуре микробного ценоза преобладают бактерии и актиномицеты. Выявлены и видовые особенности микроорганизмов в функционировании различных экосистем. В экосистемах со слабым течением минерализационных процессов (дерново-подзолистые и особенно подзолистые почвы) доминантами выступают виды, участвующие в распаде органического вещества на ранних этапах (Бас. cereus , Вас. virgulus , Вас. agglomcratus ). Более глубокая трансформация органического вещества протекает при участииВас. iciosus , Вас. mescntericus , Вас. sublilis . В экосистемах с хорошим азотным режимом почвы присутствуют зародышиВас. megatherium . Индикатором засоленныхпочв является Вас. ga . si / icans . В условиях чрезвычайной засушливости экосистем (регионы сухостепной зоны) в структуре бациллярного населения доминантом выступает Вас. mesentericus niger . Таким образом, по структуре микробного ценоза, и особенно по видовому составу микроорганизмов, можно судить о течении почвообразовательного процесса и состоянии экосистем.

10. Глобальные функции почв. Экологические функции почвы и их ограниченность. Понятие о почвоутомлении. Антропогенное загрязнение почв (тяжелые металлы, диоксины, микотоксины). Нормирование загрязнений. Сохранение и воспроизводство плодородия почв.

Функции почвы. Обеспечение жизни на Земле - глав ная функция почвы . Реализация этой функции зависит от концентрации в почве в доступных формах химических соединений биогенных элементов, необходимых организмам. Почва - своеобразное депо, удерживающее важнейшие биогены (углерод, азот, фосфор, серу, кальций, калий и др.) от быстрого смыва их в Мировой океан.

Почва аккумулирует влагу, обеспечивая в период вегетации потребность в ней автотрофного звена биогеоценозов.

Она служит сферой обитания растений, животных, микроорганизмов и т. д.

Почва упорядочивает все потоки веществ в биосфере, выступая в качестве связующего звена и регулирующего механизма в процессах биологической и геологической циркуляции элементов: по существу, она «замыкает» все биогеохимические циклы.

Почва регулирует состав атмосферы и гидросферы.

В результате постоянного газообмена между почвой и атмосферой в воздушный бассейн трансформируются различные газы(в том числе и «парниковые»), микрогазы. Например,разложении мертвых растительных остатков в среднем на 1 га суши продуцируется 84 кг диоксида углерода в сутки. Остановлено, что 40...70 % этого газа, используемого в процессе фотосинтеза,(обеспечивается «дыханием почвы». Остальное количество привносится путем горизонтального и турбулентного перемещения воздушных масс. В свою очередь, почва одновременно поглощает атмосферный кислород. Обогащая (избирательно) поверхностные и подземные воды химическими веществами, почва влияет на гидрохимическое состояние вод суши и прибрежных акваторий морей и океанов.Важнейшая глобальная функция почвы - накопление в поверхностной части коры выветривания, в почвенных органогенных горизонтах специфического органического вещества - гумуса исвязанной с ним химической энергии.Процессы биогенного накопления, трансформации и перераспределения энергии, поступающей от Солнца на землю, протекают в почве непрерывно.Почва выполняет своеобразную космическую функцию.) Запасы этой энергии являются источником жизненно важных процессов. Сосредоточена потенциальная биогенная энергия в почвенном покрове главным образом в виде корней растений, биомассы микроорганизмов игумуса.

Почва защищает литосферу от влияния экзогенных факторов и регулирует интенсивность геологической денудации.

Почва выступает как регулятор распространения живых организмов, выполняя функцию генерирования и сохранения биологического разнообразия. Будучи средой обитания множества, организмов, она ограничивает деятельность одних и способствует активности других. Чрезвычайное разнообразие почвенных разностей предопределяет весьма различные условия жизнедеятельности организмов. От этого, в частности, зависят плодородие почв и устойчивость агроэкосистем. Например, черноземные почвы, характеризующиеся высокой численностью микробного населения, обладают высоким плодородием и лучшей устойчивостью к неблагоприятным факторам среды. Дерново-подзолистые, а особенно подзолистые почвы отличаются более низкой обсемененностью почвенными микроорганизмами, невысокимплодородием и слабой устойчивостью к различным токсикантам. Следовательно, северные ценозы отличаются большей ранимостью, чем южные, и это необходимо учитывать в процессе производственной деятельности.

Значение почвы в агроэкосистемах. Почва - главное средство сельскохозяйственного производства и основа агроэкосистем. Человечество получает изпочвы около 95 % всех продуктов питания. Забота о сохранении почвенного плодородия, «здоровья» почвы должна быть приоритетной в сельскохозяйственном производстве.

Почва представляет собой жизненное пространство, обеспечивающее обитание живых организмов.

Почва является механической опорой произрастающей на ней растительности.

Незаменима роль почвы как хранителя семян. Способность почвы хранить семена в течение нескольких лет без потери всхожести объясняется наличием веществ, ингибирующих прорастаниесемян. Тем самым в природе поддерживаются биоразнообразие и способность к обновлению растительных популяций.

Почва аккумулирует необходимые для жизнедеятельности населяющих ее организмов, в том числе первичных продуцентов, воду, питательные и энергетические вещества, что в значительной степени определяет ее плодородие. Почва - своеобразный склад фер ментов. В ней находятся все известные в живых организмах ферменты, в том числе определяющие почвенное плодородие и ее «здоровье» - пероксидазы, нитрогеназы, нитратредуктазы, каталаза и др. Работа этих ферментов определяет азотный режим почвы, доступность элементов питания, а также способность почвы к детоксикации различных поллютантов.

Почва регулирует гидротермический режим, что позволяет населяющим ее организмам сохранять свою жизнедеятельность при определенных значениях температуры и влажности.

Почва выполняет санитарную функцию. Высокая самоочищающая способность почвы за счет обитающей в ней биоты обеспечивает обезвреживание многих патогенов и токсикантов, что положительно влияет на качество сельскохозяйственной продукции, состояние окружающей природной среды.

Почве присуща информационная функция. Известно, например, что переход весной температуры почвы через +5 °С стимулирует активизацию (увеличение подвижности) азота, фосфора, калия, т. е. указанный предел температуры служит «сигналом» к началу потребления питательных элементов в связи с наступлением вегетационного периода. От особенностей почвенного покрова зависят «поспевание почвы», продолжительность вегетационного периода в различных экологических условиях.

Почва выступает в качестве биохимического барьера. Способность поглощать различные соединения, в том числе токсичные, позволяет ей выполнять роль химического санитара окружающей среды и тем самым предотвращать поступление загрязнений в сельскохозяйственную продукцию.

Почвоутомление. Рассматривая функциональную роль почвы в эко- и агроэкосистемах, нельзя упускать из виду, определенную ограниченность ее. Эти функции небезграничны и вследствие производственной деятельности мог нарушаться. Один из примеров такнарушений - так называемая «утомляемость почв». Внешнее проявление почвенного утомления выражается в резком снижении урожайности с/х культур, что наблюдается при бессменном возделывании (или частомвозвращении на прежнее поле севооборота) растений одного и того же рода. Наиболее часто это отмечается при повторных посевах льна, подсолнечника сахарной свеклы, хлопчатника и некоторых других культур.Основные причины почвоутомления - накопление в почве токсичных веществ, выделяемых корнями растений и микроорганизмами, специфическими вредителей, возбудителей болезней и сорняков. Из-за возможности продуцирования микотоксинов при почвоутомлении сложившихся экологических условиях способствующих проявлению этого процесса, становится реальной опасность заражения почв, что представляет серьезную угрозу.Предотвратить почвенное утомление достаточно просто. Необходимо соблюдать севообороты, оздоравливать почвы путем внесения органических удобрений, сидератов, выращивать устойчивые сорта и т. д.

Среди перечисленных загрязнений тяжелые металлы и их соединения образуют значительную группу токсикантов, во многом определяющую антропогенное воздействие на экологическую структуру окружающей среды и на самого человека. Учитывая все возрастающие масштабы производства и применения тяжелых металлов, высокую токсичность, способность накапливаться в организме человека, оказывать вредное влияние даже в сравнительно низких концентрациях, или дозах, эти химические загрязнители должны быть отнесены к числу приоритетных. С экологических и токсиколого-гигиенических позиций не все тяжелые металлы могут быть восприняты однозначно. Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используют в производственной деятельности человека и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.Тяжелые металлы играют важную роль в обменных процессах, но в высоких концентрациях вызывают загрязнение почв, вредно воздействуют на системы. Токсичное действие тяжелых металлов может быть прямым и косвенным. В первом случае блокируется реакции с участием фермента, что водит к уменьшению либо к прекращению его каталитического действия. Косвенное воздействие проявляется в переводе питательных веществ в недоступное состояние и создании «голодной» среды.Опасность, вызываемая загрязнением тяжелыми металлами, усугубляется еще и слабым выведением их из почвы., период полуудаления в условиях венных лизиметров варьирует в зависимости от вида металлов следующим азом: дляZn- 70...510 лет,Cd-13...1100, Си-310...1500, РЬ-740... 5900лет.Тяжелые металлы претерпевают в почве химические превращения, в ходе которых их токсичность изменяется в очень широких пределах. Наибольшую опасность представляют подвижные формы тяжелых металлов, т. е. наиболее доступные для живых организмов. Подвижность же существенно зависит от почвенно-экологических факторов, основные среди которых - содержание органического вещества, кислотность почвы, окислительно-восстановительные условия, плотность почвы и др.

Для получения продукции растениеводства, свободной от тяжелых металлов, на почвах с повышенным их содержанием необходимо:

    провести агрохимическое обследование пашни, определить содержание тяжелых металлов в почве

    сопоставить содержание ТМ с содержанием калия и кальция

    произвестковать кислые почвы

    исключить применение минеральных удобрений, содержащих тяжелые металлы

    подобрать культуры, минимально потребляющие эти элементы; на сильно загрязненных полях можно выращивать культуры для технической переработки

    периодически проводить контроль продукции на содержание тяжелых металлов

Кроме того, снизить воздействие тяжелых металлов на здоровье населения можно путем решения следующих задач:

    организация точного и оперативного контроля выбросов ТМ в атмосферу и воду;

    прослеживание цепей миграции ТМ от источников до человека;

    налаживание широкого и действенного контроля (на различных уровнях, вплоть до бытового) содержания ТМ в продуктах питания, воде и напитках.

    проведение выборочных, а затем и массовых обследований населения на содержание ТМ в организме.

    Сложности решения указанных задач состоят в том, что: 1) миграция и токсичность элементов зависят от физико-физических форм, поэтому методы анализа должны давать возможность определять связанные и лабильные формы вещества, степень окисления элементов; 2) средства контроля должны обладать низким порогом обнаружения, высокой селективностью и низкой стоимостью.

    Загрязнение диоксинами. Среди токсикантов антропогенного происхождения, загрязняющих экосистемы (в том числе и почвы), огромную опасность представляют диоксины. Диоксины характеризуются необычайно высокой устойчивостью в почве. При попадании на почву они переходят в ее органическую фазу, мигрируют (главным образом в вертикальном направлении) в виде комплексов с органическим веществом, поступая в водоемы и включаясь в пищевые цепи. В связи с огромной экологической опасностью, связанной с загрязнением окружающей среды диоксинами, введены ограничения на пригодность почв, зараженных данными токсикантами, для различного использования. Непригодными для проживания считаются почвы с концентрацией диоксинов 1 нг/кг; пригодны для использования под промышленное строительство - с концентрацией более 0,25 нг/кг, для использования в сельском хозяйстве - более 0,01 нг/кг.

    Обеззараживать почвы от диоксинов исключительно трудно. Пока что можно говорить лишь о снижении опасности, которую они представляют. В первую очередь необходимо совершенствовать технологии на производствах, являющихся источником токсиканта, жестко соблюдать нормы содержания его в различных объектах (воде, почве), разрабатывать технологии, разрушающие препарат. Возможные меры по снижению токсичности уже загрязненных территорий - удаление и разложение диоксинов путем термической обработки с помощью инфракрасного нагрева, методом электрического пиролиза, ультрафиолетового фотолиза и др. Загрязнение микотоксинами. Серьезная угроза для экосистем - загрязнение почв микотоксинами - ядами, продуцируемыми микроскопическими грибами. Микотоксины могут поражать кормовые растения, корма, а также животных и человека. Из известных многочисленных видов грибов (160... 300) способность к продуцированию ядов обнаружена примерно у 50 % (грибы родов Aspergillus, Penicillium, Fusarium, Mucor, Rhizopus, Helmintosporium, Clado-sporium, Alternaria и др.).

    Способность к продуцированию токсинов отмечена не только у грибов, она присуща бактериям и актиномицетам, Эта способность усиливается при ухудшении экологической обстановки. При изучении влияния повышенных доз свинца и пестицида купрозана (исключен из применения) было установлено снижение энергии прорастания овса, уменьшение развития корневой системы, что указывает на наличие токсичных веществ в почве. При этом в составе микробного населения доминантами становились актиномицеты группы Niger и их стерильные формы, сокращалось видовое разнообразие бацилл. Для снижения и предотвращения опасности загрязнения микробными токсинами необходимо использовать естественные биологические механизмы защиты почв, включая структуру микробного ценоза и его биоразнообразие. В результате антропогенного воздействия в почвах сильно снизилась активность действия естественных природных механизмов, определяющих устойчивость и продуктивность экосистем, а также качество окружающей среды. Основные причины нарушения этих процессов: дегумификация, увеличение кислотности, нарушение гидрологического режима, переуплотнение почв и др. Для обеспечения в пахотном слое почв оптимального содержания питательных элементов и гумуса необходимо ежегодно вносить в целом по России не менее 16,5 млн т минеральных удобрений, 50 млн т мелиорантов и 600 млн т органических удобрений. Фактически в 1993 г. внесли 4,8 млн т минеральных удобрений и 231 млн т органических, в 1996 г. - соответственно 1,6 и 88,1 млн т. Ухудшение состояния почвенного покрова создает условия для продуцирования микроорганизмами микотоксинов, что в перспективе может привести к непредсказуемым экологическим последствиям. Следовательно, необходимо решать задачи, направленные на сохранение гумуса в почве, оптимизацию кислотности почвенного раствора, предотвращение переуплотнения, регулирование окислительно-восстановительного потенциала.

Агроэкологический мониторинг - представляет собой общегосударственную систему наблюдений и контроля за состоянием и уровнем загрязнения агроэкосистем (и сопредельных с ним сред) в процессе интенсивной сельскохозяйственной деятельности. Основная цель - создание высокоэффективных, экологически сбалансированных агроценозов на основе расширенного воспроизводства почвенного покрова, максимального использования природных ресурсов, рационального применения средств химизации.Задачи агроэкологического мониторинга:

    организация наблюдений за состоянием агроэкосистем;

    получение объективной, систематической и оперативной информации по регламентированному набору обязательных показателей, характеризующих состояние ифункционирование основных компонентов агроэкосистем;

    оценка получаемой информации;

    прогноз возможного изменения состояния данного агроценоза или системы их вближайшей и отдаленной перспективе;

    предупреждение возникновения экстремальных ситуаций и обоснование путей выхода из них;

    направленное управление эффективностью агроэкосистем.

Основными принципами агроэкологического мониторинга являются:

    Комплексность, то есть одновременный контроль за тремя группам показателей,отражающих наиболее существенные особенности вариабельности агроэкосистем (показатели ранней диагностики изменений; показатели, характеризующие сезонные или краткосрочные изменения; показатели долгосрочных изменений).

    Непрерывность контроля за агроэкосистемой, предусматривающая строгую периодичность наблюдений по каждому показателю с учетом возможных темпов и интенсивности его изменений.

    Единство целей и задач исследований, проводимых разными специалистами (агрометеорологами, агрохимиками, гидрологами, микробиологами, почвоведами ит.д.) по согласованным программам под единым научно-методическим руководством.

    Системность исследований, то есть одновременное исследование блока компонентов агроэкосистемы: атмосфера-вода-растение-животное-человек.

    Достоверность исследований, предусматривающая, что точность их должна перекрывать пространственное варьирование, сопровождаться оценкой достоверности различий.

    Одновременность (совмещение, сопряженность)наблюдений по системе объектов, расположенных в различных природных зонах.

Одним из методических приемов изучения природной среды является, как известно, разделение ее на определенные подсистемы (блоки) в зависимости от целей эксперимента. В качестве изучаемых вариантов, например, целесообразно использовать принятые системы земледелия, обеспечивающие различные уровни продуктивности агроэкосистемы. В системе устойчивого развития агроэкосистем агроэкологический мониторинг занимает ведущее место. Важным условием повышения устойчивости экосистем (и особенно агроэкосистем) служит разработка, совершенствование и строгое соблюдение экологических нормативов, стандартов, правил и других регламентов, регулирующих хозяйственную деятельность по использованию ландшафтов.

Величины предельно допустимых концентраций поллютантов, устанавливаемые по степенивредности веществ или рефлекторной реакции организма на них, являются наиболеераспространенными показателями состояния загрязненности природной среды.Одна из распространенных в настоящее время точек зрения заключается в том, чтоконечной целью экологического нормирования является стремление сохранить естественное течение сукцессионных процессов на основании определения норм состояния объекта посредством анализа параметров агроэкосистемы и интервалов их естественных колебаний, а также установления соответствующих пороговых и критическихпределов. Этот этап называют экологической регламентацией. Следующий этап - это собственно экологическое нормирование. Заключается он в определении экологических нормативов на основе экологических регламентов.Использование системы наиболее общих и симптоматичных интегральных параметров агроэкосистем позволяет оценивать отклонения от некоторого состояния, условно принимаемого за норму. Основными блок-компонентами агроэкосистем являются: атмосфера, вода, почва,растения. Проведение мониторинга по каждому из этих объектов имеет определенныеособенности. Почвенный экологический мониторинг состоит из трех последовательных взаимосвязанных частей:

    Контроль (наблюдение) за состоянием почв и почвенного покрова и оценка их пространственно-временных изменений.

    Прогноз вероятных изменений состояния почв и почвенного покрова.

Усиление негативных антропогенных воздействий, обусловливающих нарушение почв и снижение их плодородия, объективно диктует необходимость включать в программы почвенно-экологического мониторинга комплекс задач. Ориентировочный перечень их можно представить так:

    определение потерь почвы (в том числе скорости потерь) в связи с развитием водной эрозии и дефляции;

    контроль за изменением кислотности и щелочности почв (прежде всего, в районах сповышенными дозами внесения минеральных удобрений при осушении и орошении, а также при использовании мелиорантов и промышленных отходов, в окрестностях крупных промышленных центров, которые характеризуются высокой кислотностью атмосферных осадков);

    контроль за изменением водно-солевого режима и водно-солевых балансов мелиорируемых, удобряемых или каким-либо другим способом изменяемых почв;

    выявление регионов с нарушенным балансом основных элементов питания растений; обнаружение и оценка скорости потерь почвами гумуса, доступных форм азота и фосфора; контроль за загрязнением почв тяжелыми металлами, выпадающими с атмосферными осадками, и за локальным загрязнением их тяжелыми металлами в зонах влияния промышленных предприятий и транспортных магистралей;

    контроль за загрязнением почв химическими средствами защиты растений в районах их постоянного использования (например, на рисовых полях);

    контроль за загрязнением почв детергентами и бытовыми отходами, особенно натерриториях с высокой плотностью населения;

    сезонный и долгосрочный контроль за структурой почв и содержанием в них элементов питания растений, за водно-физическими свойствами и уровнем грунтовых вод;

    экспертная оценка вероятности изменения свойств почв при сооружении гидромелиоративных систем, внедрении новых систем земледелия и технологий, строительстве крупных промышленных предприятий и других объектов.

Для достижения репрезентативности наблюдений и объективности оценок состояния и изменений почвенно-агрохимических свойств почвенные обследования целесообразно проводить с периодичностью в 10-15 лет, а агрохимические - через 5 лет. Повторные работы такого рода (в инструктивных документах называемые корректировкой материалов ранее проведенных крупномасштабных почвенных обследований),с одной стороны, позволяют устранять недостатки и восполнять пробелы прежних наблюдений, а с другой - (что наиболее существенно) выявлять и фиксировать происшедшие изменения свойств почв и почвенного покрова вследствие антропогенных воздействий, развития процессов эрозии и т.д. Структура агроэкологического мониторинга включает универсальные параметры, характеризующие каждый компонент агроэкосистемы. Важнейшая задача - получение высококачественной продукции - требует всестороннего и разноуровневого контроля.Токсические вещества, поступающие в результате деятельности человека в агроэкосистемы, через атмосферу, гидросферу и почву, включаясь в биогеохимические круговороты, транспортируются по цепочке:Растения-корма-продукты питания - организм животных - организм человека.

Будучи одним из обязательных условий формирования системы целенаправленного управления производством экологически безопасной сельскохозяйственной продукции, агроэкологический мониторинг должен основываться и на знании процессовбиогеохимического круговорота веществ. При этом важна «емкость» мониторинга. В перечень показателей, подлежащих контролю, обязательно входят элементы, влияющие опосредственно или прямо на организм человека и животных. Возможное наличиебиогенных элементов, тяжелых металлов и других ингредиентов следует контролировать в поливной и питьевой воде, растительной и животной продукции, лекарственном сырье; должен также осуществляться контроль за качеством продукции в процессе переработки и т.д.По сути дела подконтрольной должна быть вся трофическая цепь. Для объективного учета биогеохимических особенностей территорий при проведении мониторинга целесообразно основываться на многолетних сведениях, в том числе:

исторических (характер землепользования за период в 50 лет и более, начало эксплуатации земельного фонда, динамика уровней химизации и т.п.);

агрохимических(сравнение с ранее взятыми почвенными монолитами анализов современных почв,особенно по содержанию микроэлементов, тяжелых металлов и др.);

на климатических условиях, развитии процессов химического загрязнения воздуха и водных источников; на наличии естественных биогеохимических провинций.

Живые организмы - обязательный компонент почвы. Количество их в хорошо окультуренной почве может достигать не­скольких миллиардов в 1 г почвы, а общая масса - до 10 т/га.

Основная их часть - микроорганизмы. Доминирующее значение принадлежит растительным микроорганизмам (бактерии, грибы, водоросли, актиномицеты). Животные организмы пред­ставлены простейшими (жгутиковые, корненожки, инфузории), а также червями. Довольно широко распространены в почве моллюски и членистоногие (паукообразные, насекомые).

Почвенные организмы разрушают отмершие остатки растений и животных, поступающие в почву. Одна часть органического вещества минерализуется полностью, а продукты минерализации усваиваются растениями, другая же переходит в форму гумусо­вых веществ и живых тел почвенных организмов.

Некоторые микроорганизмы (клубеньковые и свободноживущие азотфиксирующие бактерии) усваивают азот атмосферы и обогащают им почву.

Почвенные организмы (особенно фауна) способствуют пере­мещению веществ по профилю почвы, тщательному перемеши­ванию органической и минеральной части почвы.

Важнейшая функция почвенных организмов - создание проч­ной комковатой структуры почвы пахотного слоя. Последнее в решающей степени определяет водно-воздушный режим почвы, создает условия высокого плодородия почвы.

Наконец, почвенные организмы выделяют в процессе жизне­деятельности различные физиологически активные соединения, способствуют переводу одних элементов в подвижную форму и, наоборот, закреплению других в недоступную для растений форму.

В обрабатываемой почве функции почвенных организмов сводятся к поддержанию оптимального питательного режима (частичное закрепление минеральных удобрений с последующим освобождением по мере роста и развития растений), оструктуриванию почвы, устранению неблагоприятных экологических ус­ловий в почве.

В интенсивном земледелии экологические условия могут иног­да в решающей степени определять эффективное плодородие почвы. В ней существуют тесные многообразные связи между всеми почвенными организмами. Причем вся эта система нахо­дится в состоянии непрерывно изменяющегося равновесия. Одни группы микроорганизмов предъявляют простые требования к пи­ще, другие - сложные. Между одними группами существуют симбиотические (взаимно полезные) связи, между другими - антибиотические. Микроорганизмы в последнем случае выделяют в почву вещества, подавляющие развитие других микроорганизмов.

Практическое значение имеет способность некоторых микро­организмов оказывать губительное действие на представителей фитопатогенной микрофлоры. Усилить активность желательных микроорганизмов можно путем внесения в почву органиче­ского вещества. В этом случае отмечается вспышка в разви­тии почвенных сапрофитов, которые, в свою очередь, стимулиру­ют развитие микроорганизмов, угнетающих фитопатогенные виды. Для нормального функционирования почвенных организ­мов необходимы прежде всего энергия и питательные вещества. Для подавляющего большинства микроорганизмов такой источник энергии - органическое вещество почвы. Поэтому активность почвенной микрофлоры главным образом зависит от поступления или наличия в почве органического вещества.

Для оценки деятельности почвенной биоты используют пока­затель «биологическая активность почвы». Под биологической активностью понимают, в одних случаях общую биогенность почвы, определяемую, как правило, подсчетом общего количества поч­венных микроорганизмов. Если иметь в виду несовершенство методик, применяемых в этом случае, и малую кратность опреде­лений во времени, то результаты анализа дают примерную картину биологической активности почвы.

Другая точка зрения относительно методов определения био­логической активности почвы заключается в учете результатов деятельности почвенных организмов. Особенно важен такой под­ход в агрономии. Однако привести к общему знаменателю исклю­чительно многообразную деятельность почвенной флоры и фауны методически непросто.

Наиболее универсальный показатель деятельности почвенных организмов - продуцирование ими углекислого газа. Поэтому учет выделяемого почвой углекислого газа - первостепенный из других биохимических способов определения биологической активности почвы.

error: Content is protected !!